Q&A on artificial intelligence for supporting public health

Reference tool to support the exchange of information and promote open conversations and debates
Q&A on artificial intelligence for supporting public health

Reference tool to support the exchange of information and promote open conversations and debates

Washington, D.C., 2024
Q&A on artificial intelligence for supporting public health: Reference tool to support the exchange of information and promote open conversations and debates

PAHO/EIH/IS/23-0030

© Pan American Health Organization, 2024

Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO license (CC BY-NC-SA 3.0 IGO).

Under the terms of this license, this work may be copied, redistributed, and adapted for non-commercial purposes, provided the new work is issued using the same or equivalent Creative Commons license and it is appropriately cited. In any use of this work, there should be no suggestion that the Pan American Health Organization (PAHO) endorses any specific organization, product, or service. Use of the PAHO logo is not permitted.

All reasonable precautions have been taken by PAHO to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall PAHO be liable for damages arising from its use.
Contents

Acknowledgments ... 5
I. Presentation .. 1
II. PAHO’s guiding principles for the use of artificial intelligence for public health (AI4PH) interventions ... 2
III. WHO six principles to ensure AI works for the public interest in all countries 3

What is AI? .. 4
What is the role of AI in supporting public health initiatives? ... 4
What is the difference between AI and machine learning? .. 4
Why is machine learning important for the formulation of public health policies? 5
What is deep learning? .. 5
What is the difference between machine learning and deep learning? .. 5
Why is deep learning important for public health? .. 6
What is meant by hallucinations in the use of AI? .. 8
Why is understanding the concept of hallucinations critical in using AI for public health tools? 8
What is a prompt? .. 8
Why is understanding what a prompt in AI is important for public health? 8
What is generative AI? ... 8
What are the differences between generative AI models and non generative AI models? 9
What are large language models? ... 9
How may large language models contribute to public health systems? ... 9
How does AI help in disease surveillance and early detection of outbreaks? 10
What AI-based tools are used to analyze epidemiological data and trends? 11
How can AI be employed to enhance infectious disease forecasting and modeling? 11
How can AI be leveraged to improve vaccination distribution and uptake? 13
What role does AI play in analyzing social determinants of health and addressing health disparities? ... 14
Can AI help in predicting and preventing noncommunicable diseases? If so, how? 15
How could AI assist with the tracking of substandard and falsified (fake) medicines that are in circulation in a country? ... 16
How can AI support continuous learning among healthcare workers for professional development despite their very busy schedules? .. 17
What are the ethical considerations that must be taken into account when it comes to AI in public health? .. 18
What are the potential biases associated with using AI in public health? .. 19
What measures are needed to ensure data privacy and security when using AI in public health? .. 20
How does AI assist in medical image analysis and diagnosis, and what are its benefits for healthcare providers? .. 20
What are some examples of AI-driven applications in patient care and treatment planning? .. 20
How can AI support decision-making processes for healthcare policymakers and administrators? .. 20
What challenges and limitations should be considered when implementing AI in the public health domain? .. 21
How can AI-powered chatbots and virtual assistants assist in providing reliable health information to the public? .. 21
What actions are needed to ensure AI algorithms are transparent and explainable for regulatory purposes in public health? .. 21
How is AI being used in contact tracing efforts during disease outbreaks? .. 23
How can AI be utilized to optimize healthcare resource allocation and management? .. 23
What are the future trends and advancements expected in AI applications for public health? .. 23
How can governments and health agencies foster responsible AI adoption in the context of public health? .. 24
What are the potential cost savings and economic benefits associated with integrating AI into public health practices? .. 24
How does AI contribute to behavioral health research and mental health support? .. 25
Key messages .. 26
IV. Official documents and reports .. 28
V. References .. 30
Acknowledgments

Coordination
Information Systems and Digital Health Unit
Department of Evidence and Intelligence for Action in Health (EIH)
Pan American Health Organization
World Health Organization

Expert group
Experts who reviewed, adjusted, curated, and controlled the validity of the content generated from the dialogue between them and the generative artificial intelligence tools.

The following experts participated in the process (alphabetical order):
I. Presentation

In light of the rapid proliferation of artificial intelligence-driven applications and the heightened levels of anticipation, questions, and uncertainties surrounding their implementation within the public health domain, the Pan American Health Organization (PAHO) is proud to introduce this series of publications entitled Reference tool to support the exchange of information and promote open conversations and debates. The primary aim is to foster a deeper comprehension of the genuine capabilities of artificial intelligence (AI) in Public Health, alongside an exploration of potential risks stemming from its inappropriate utilization.

In this document, you will encounter a symphony of insights – where technology harmoniously blends with human expertise to shape the future of public health. Each question invites you to enhance your knowledge and understanding of the potential of AI in Public Health.

The method used was as follows: A group of PAHO experts together with internationally renowned figures, convened to discuss the document's scope, question formulation, prompt definition, and scientific sources to support the Q&A processes, and ultimately to edit and curate some responses generated through an interactive “virtual” dialogue between them and generative and other AI tools. In formulating prompts, a “standard” style was adopted, instructing AI platforms to act as experts in AI and Public Health, serving as scientific writers and professional editors. After agreeing on questions, generative AI tools and scientific literature searches in peer-reviewed sources were employed for the analysis, curation, production and editing of responses. After agreeing on the initial answers and reviewing information sources through expert discussions, some questions were reformulated, repeating the cycle of building responses. This document serves as a reference tool for debates on the potential of generative AI tools.

This document does not aim to be an exhaustive guide on AI for public health. Instead, it provides complementary references for readers to further explore the topic.
II. PAHO’s guiding principles for the use of artificial intelligence for public health (AI4PH) interventions

The use of AI in public health must be guided by superior technical and ethical considerations aimed to mitigate ethical risk in public health and related policy interventions, reflected in the following eight guiding principles (1) (2) (3):

- **People-centered.** Actions and solutions must be people-centered and not be used solely by itself. As one of many technologies to aid public health, AI should respect the rights of the individual.

- **Ethically grounded.** Discussions, developments, and implementation must be grounded in the globally recognized ethical principles of human dignity, beneficence, nonmaleficence, and justice.

- **Transparent.** Transparent approaches must always be used and communicated when developing AI algorithms.

- **Data-protected.** Privacy, confidentiality, and security of data use must be foundational to every AI development.

- **Demonstrates scientific integrity.** AI interventions should follow scientific best practice, including being reliable, reproducible, fair, honest, and accountable.

- **Open and shareable.** Everything must be as open and shareable as possible. Tools and underlying concepts of openness must be a feature and a critical success factor of any AI development.

- **Nondiscriminatory.** Fairness, equality, and inclusiveness in impact and design should always form the foundation of any AI for public health initiative.

- **Human-controlled technology.** Formal processes for human control and review of automated decisions are mandatory.
III. WHO six principles to ensure AI works for the public interest in all countries

To limit the risks and maximize the opportunities intrinsic to the use of AI for health, WHO provides the following principles as the basis for AI regulation and governance (4):

Protecting human autonomy. In the context of health care, this means that humans should remain in control of healthcare systems and medical decisions; privacy and confidentiality should be protected, and patients must give valid informed consent through appropriate legal frameworks for data protection.

Promoting human well-being and safety and the public interest. The designers of AI technologies should satisfy regulatory requirements for safety, accuracy, and efficacy for well-defined use cases or indications. Measures of quality control in practice and quality improvement in the use of AI must be available.

Ensuring transparency, explainability, and intelligibility. Transparency requires that sufficient information be published or documented before the design or deployment of an AI technology. Such information must be easily accessible and facilitate meaningful public consultation and debate on how the technology is designed and how it should or should not be used.

Fostering responsibility and accountability. Although AI technologies perform specific tasks, it is the responsibility of stakeholders to ensure that they are used under appropriate conditions and by appropriately trained people. Effective mechanisms should be available for questioning and for redress for individuals and groups that are adversely affected by decisions based on algorithms.

Ensuring inclusiveness and equity. Inclusiveness requires that AI for health be designed to encourage the widest possible equitable use and access, irrespective of age, sex, gender, income, race, ethnicity, sexual orientation, ability, or other characteristics protected under human rights codes.

Promoting AI that is responsive and sustainable. Designers, developers, and users should continuously and transparently assess AI applications during actual use to determine whether AI responds adequately and appropriately to expectations and requirements. AI systems should also be designed to minimize their environmental consequences and increase energy efficiency.

Governments and companies should address anticipated disruptions in the workplace, including training for healthcare workers to adapt to the use of AI systems, and potential job losses due to use of automated systems.
What is AI?

AI is the science that develops machines able to do tasks that would require human intelligence, which includes many different areas of application. It involves the development of algorithms, processes, machines, and computer programs that can perform tasks that typically require human intelligence, such as problem-solving, learning, visual perception, speech recognition, language understanding, and decision-making. In the field of health there are successful examples of using AI in population health, research, care processes, solutions for patients, and the optimization of health operations. Moreover, AI has the potential to help overcome growing health challenges, including rising costs, demographic and epidemiological changes, unmet health needs related to the double burden of infectious and noncommunicable diseases, and a significant shortage of trained health professionals (2).

What is the role of AI in supporting public health initiatives?

AI for public health refers to the use of algorithms, processes, machines, and computer programs that can learn from data and make predictions or decisions to improve health care, self-care, well-being, and disease management and prevention. AI tools can analyze large amounts of datasets and information, such as health records, disease patterns, or social media posts, to help health workers, researchers, individuals, and policymakers make better decisions and provide more effective care to people. AI plays a vital role in supporting public health initiatives by assisting in disease surveillance, early outbreak detection, analyzing epidemiological data, optimizing resource allocation, and improving patient care, among others. It enhances decision-making processes for policymakers and administrators, contributing to more efficient and effective public health interventions. (5)(6)(7)

What is the difference between AI and machine learning?

AI is a broad concept encompassing any technology capable of performing tasks that typically require human intelligence. Within AI is a subset called machine learning, which involves statistical techniques enabling machines to learn from data, identify patterns, and make decisions without explicit programming. To illustrate further, AI functions as a discipline similar to physics, focusing on creating intelligence agents – systems capable of learning, with gradual improvement in accuracy. Essentially, AI delves into the theory and methods of building machines that emulate human thought and behavior. One specific subset of AI is machine learning, where programs train models using input data, enabling these models to make valuable predictions when presented with new, previously unseen data from the same training dataset(8).
Why is machine learning important for the formulation of public health policies?

Machine learning holds significant importance in the formulation of public health policies due to its ability to analyze vast amounts of healthcare data and derive valuable insights. By processing complex datasets, machine learning algorithms can identify patterns, trends, and potential risk factors associated with various health conditions and diseases. Machine learning also aids in predictive modeling, enabling policymakers to anticipate healthcare demands and allocate resources, accordingly, optimizing healthcare delivery. It can also support the identification of vulnerable populations and health disparities, facilitating targeted interventions to address specific healthcare challenges. The effectiveness of machine learning recommendations in public policies will depend not only on the quality of that particular technology but on the quality of the data with which it works, because AI systems are widely recognized as suffering from bias in their inputs, processing, and outputs. Social biases in AI systems can lead to unequal distribution of outcomes across patient populations and protected demographic groups. There are many questions about how algorithms are structured; we need to be vigilant because they often replicate patterns of inequity(9,10).

What is deep learning?

Deep learning is a type of machine learning approach that concentrates on instructing multilayer artificial neural networks to carry out complex tasks by automatically learning hierarchical representations of data. It involves creating deep neural networks that have many layers, allowing the system to progressively learn intricate features and patterns from raw input data. To adjust the numerous parameters within the neural network, deep learning algorithms utilize vast amounts of labeled data through a process known as training. This process enables the network to comprehend complex relationships in the data and make precise predictions or classifications. Deep learning has proven to be quite successful in various areas such as image and speech recognition, natural language processing, and autonomous systems (11)(12).

What is the difference between machine learning and deep learning?

Machine learning and deep learning are both subfields of AI that focus on developing algorithms and models that enable computers to learn and make predictions or decisions based on data. However, they differ in terms of their techniques, architectures, and applications (13)(14).

Some differences between machine learning and deep learning

Architecture and model complexity

- **Machine learning**: Models are typically based on simpler algorithms and feature engineering. These models include decision trees, support vector machines, random forests, linear regression, boosting algorithms, and more. They rely on handcrafted features extracted from the data.
- **Deep learning**: Involves neural networks with multiple layers (deep neural networks). These networks are capable of automatically learning hierarchical features from raw data, eliminating the need for extensive manual feature engineering.

Data requirements
- **Machine learning**: Can perform well with a relatively small amount of data, particularly when feature engineering is done effectively.
- **Deep learning**: Deep neural networks often require large amounts of labeled data to train effectively. They excel in scenarios with big data and high-dimensional data, such as image feature extraction and speech recognition.

Feature engineering
- **Machine learning**: Feature engineering is a critical step in traditional machine learning, where domain experts manually design and select relevant features from the data.
- **Deep learning**: Deep learning models can automatically learn features from raw data during training, reducing the need for extensive manual feature engineering.

Algorithms
- **Machine learning**: Uses a variety of algorithms for classification, regression, clustering, and more. These algorithms are generally shallow and not as complex as deep neural networks.
- **Deep learning**: Primarily relies on neural networks, specifically deep neural networks, which consist of multiple layers of interconnected nodes (neurons).

Interpretability
- **Machine learning**: Often more interpretable, as the relationships between features and outcomes are more explicit.
- **Deep learning**: Often considered “black box” models because the internal representations and decision-making processes can be complex and difficult to interpret.

Applications
- **Machine learning**: Machine learning is used in a wide range of applications, including text classification, fraud detection, recommendation systems, and more.
- **Deep learning**: Deep learning has excelled in tasks such as image recognition, natural language processing, speech recognition, and more.

Why is deep learning important for public health?
Deep learning plays a pivotal role in advancing public health by offering innovative solutions that can significantly enhance disease prevention, diagnosis, treatment, and overall healthcare management. Its unique capabilities in handling large and complex healthcare datasets, coupled with its prowess in pattern recognition and prediction, make deep learning a crucial tool for addressing critical challenges in the realm of public health (15).

- **Medical imaging analysis**: Deep learning excels in interpreting medical images, such as X rays, MRIs, and CT scans. Its ability to identify intricate patterns and anomalies within images aids in the early detection of diseases like cancer, cardiovascular disorders, and...
neurological conditions. Automated image analysis powered by deep learning expedites the diagnosis process, leading to quicker treatment initiation and improved patient outcomes (16).

- **Diagnosis and risk assessment**: Deep learning models can process vast amounts of patient data, including electronic health records and genetic information, to identify patterns that might indicate the onset of diseases or determine an individual’s risk factors. This assists healthcare professionals in making more informed decisions about patient care and implementing personalized treatment plans.

- **Drug discovery and development**: Deep learning accelerates drug discovery by analyzing massive datasets related to molecular structures, biological interactions, and chemical properties. It aids in identifying potential drug candidates, predicting their efficacy, and simulating their interactions with the human body, ultimately streamlining the drug development process (17)(18).

- **Epidemiology and disease outbreak prediction**: Deep learning models can analyze diverse data sources, such as social media, online searches, and sensor data, to predict disease outbreaks and monitor their progression. This early detection and tracking of epidemics are crucial for timely public health interventions and resource allocation (19,20).

- **Health monitoring and wearable devices**: Wearable devices equipped with sensors collect real-time health data, which can be analyzed by deep learning algorithms to provide insights into an individual’s physical activity, heart rate, sleep patterns, and more. This data aids in proactive disease management and promoting healthy lifestyles (21)(22).

- **Genomic analysis**: Deep learning is instrumental in deciphering complex genomic data, identifying disease-associated genetic markers, and predicting an individual’s susceptibility to certain conditions. This knowledge informs precision medicine approaches, where treatments are tailored to a patient’s genetic makeup (23).

- **Natural language processing for healthcare records**: Deep learning techniques, including natural language processing, can extract valuable information from unstructured healthcare records, clinical notes, and medical literature. This enhances decision-making by providing healthcare professionals with comprehensive and up-to-date information.

- **Remote patient monitoring and telehealth**: Deep learning facilitates remote patient monitoring by analyzing data collected from patients’ homes. This enables healthcare providers to track patients’ health conditions, intervene as needed, and offer telehealth services, enhancing access to health care, especially in remote or underserved areas (24).

- **Public health surveillance**: Deep learning assists in monitoring public health trends by analyzing data from various sources, such as social media, news reports, and government health agencies. It aids in timely identification of potential health threats and the formulation of appropriate responses (25)(26).

When deciding whether to use deep learning in health care, it is important to consider the complexity and size of the data, as well as the specific problem that it should be addressing. Deep learning is most effective when dealing with large, high-dimensional datasets and tasks that require the automatic extraction of intricate patterns.
What is meant by hallucinations in the use of AI?

Hallucinations refer to erroneous or false data generated by generative AI algorithms, leading to incorrect or misleading results. Identifying and addressing hallucinations is important to ensure the accuracy and reliability of AI-driven insights and prevent potential misinterpretations in critical applications, such as in public health. (27)

Why is understanding the concept of hallucinations critical in using AI for public health tools?

Understanding the concept of hallucinations is critical in using AI tools in public health because it helps distinguish between genuine and erroneous information generated by the AI algorithms. By recognizing hallucinations, public health professionals can ensure the accuracy and reliability of AI-driven insights, preventing potential misinterpretations that could lead to incorrect decisions or interventions. It allows for a more cautious and responsible application of AI in public health, safeguarding public trust and ensuring the best possible outcomes for healthcare interventions and policies. (27,28)

What is a prompt?

A prompt is a specific input or instruction given to a large language model or AI system to generate a response or output. It serves as the starting point for the system to understand the context and generate relevant text based on the given input. The quality and specificity of the prompt can significantly influence the nature and accuracy of the AI-generated response. For natural language processing models, prompts can be in the form of questions, sentences, or partial text, guiding the AI to produce coherent and contextually appropriate answers. In other words, when people “ask questions” to an AI tool, they are instead executing a command (29).

Why is understanding what a prompt in AI is important for public health?

Understanding what a prompt is in AI is important for public health because it enables public health professionals to effectively interact with AI systems and obtain accurate and relevant information. By crafting appropriate prompts, they can elicit specific and contextually appropriate responses from AI models, facilitating data analysis, decision-making, and problem-solving in public health initiatives. A clear understanding of prompts helps ensure that AI-generated insights align with the intended purpose, improving AI tools’ overall use and effectiveness in addressing public health challenges (30) (31).

What is generative AI?

Generative artificial intelligence, or generative AI, refers to a type of artificial intelligence system capable of generating new content, such as text, images, or other media, in response to prompts or inputs. Generative AI models learn the patterns and structures within existing data and use that knowledge to create new and original content with similar characteristics. Generative AI has a wide range of applications across various industries, including art, writing, software development, health care, finance, gaming, marketing, and fashion. It has the potential to automate and enhance
creative processes, allowing for the generation of high-quality content in a matter of seconds (32). In health care, generative AI has the potential of improving the accuracy and efficiency of medical interpretations, predictions, and screenings, among others. (33)(34)

What are the differences between generative AI models and non-generative AI models?

Generative AI models have the ability to create new data based on patterns learned from existing data. They are used for tasks such as creative content generation and data synthesis. However, non-generative AI models are designed for specific tasks and do not have the capability to generate new data. They are more commonly used for classification, regression, and decision-making tasks.

What are large language models?

Large language models (LLMs) are advanced AI models built to understand and generate human language. These models use deep learning techniques, particularly transformers, to process and generate text. They have significantly improved natural language understanding and are employed in various applications, including language translation, sentiment analysis, and text generation. LLMs are advanced AI models built to understand and generate human language. They represent a significant leap in the field of AI designed to comprehend and produce human language with an unparalleled level of sophistication. These models use deep learning techniques and revolutionary architecture known as transformers, which have redefined the landscape of natural language processing. Transformers are a class of neural network architecture specifically engineered to address the limitations of previous models in handling sequential data, making them particularly well suited for language tasks. LLMs have significantly improved natural language understanding and are employed in various applications, including language translation, sentiment analysis, and text generation. Although LLMs are powerful, they should not replace human supervision in important medical decision-making. Human interpretation is essential to contextualize the information generated by AI and take ethical and emotional factors into account (35).

How may large language models contribute to public health systems?

LLMs can contribute to public health systems in several ways, including:

- **Disease surveillance**: LLMs have the capability to process and analyze vast amounts of data from sources like social media, news articles, and online forums. By doing so, they can identify subtle patterns and trends related to the spread of diseases. Public health officials can utilize LLMs to monitor mentions of symptoms, travel patterns, and public sentiments, enabling early detection of potential outbreaks. This timely information empowers authorities to implement rapid response measures, such as targeted interventions and resource allocation, to contain and mitigate the impact of emerging health threats (36) (37).

- **Diagnosis and treatment**: LLMs can assist healthcare professionals in diagnosing and treating diseases by analyzing patient data, medical records, and relevant research. These models can identify correlations and anomalies within patient data that may not be immediately apparent to human clinicians. By recognizing subtle patterns in symptoms, test results, and medical

Q&A on artificial intelligence for supporting public health
histories, LLMs can contribute to more accurate and personalized diagnoses. Additionally, LLMs can aid in suggesting potential treatment options based on the latest medical literature and clinical guidelines, enhancing the quality of patient care (38)(39).

- **Public health policies:** LLMs are powerful tools for analyzing diverse datasets, including healthcare records, demographic information, and epidemiological data. LLMs can also support designing analytical frameworks, codes, and data-processing routines to generate insights concerning data sources. This analytical capacity enables them to uncover hidden connections between various factors and public health outcomes. By processing this information, LLMs can identify potential risk factors for diseases, forecast disease trajectories, and assess the effectiveness of different intervention strategies. Policymakers can leverage these insights to formulate evidence-based public health policies that address the unique challenges of different populations and improve overall community well-being (38).

- **Patient education:** LLMs can personalize patient education materials to suit individual needs and preferences. These models can generate informative and easy-to-understand content that explains medical conditions, treatment options, and preventive measures. LLMs enhance patient comprehension and engagement by tailoring educational materials to each patient's background, language proficiency, and cultural context. This personalized approach increases patients' likelihood of following treatment plans, adopting healthier behaviors, and actively participating in their healthcare management. In the event that an LLM interacts directly with a patient, it should identify itself as an artificial system (40) (38,41).

How does AI help in disease surveillance and early detection of outbreaks?

AI’s multifaceted capabilities in data analysis, pattern recognition, real-time monitoring, and predictive modeling empower public health systems to identify potential disease outbreaks early and take prompt, informed actions to mitigate their impact. AI-powered systems have played a crucial role in this process by analyzing a wide range of data sources, including social media, electronic health records, and Internet search trends. By analyzing these diverse data sources, healthcare professionals can gain valuable insights into the spread and prevalence of various diseases, allowing them to take proactive measures to prevent outbreaks and minimize their impact. AI, identifying unusual patterns or signals, can detect potential disease outbreaks early, allowing public health authorities to respond quickly and implement appropriate preventive measures (42).

- **Data integration and analysis:** AI harnesses its data integration capabilities to seamlessly amalgamate a wide range of information sources, such as social media posts, news articles, medical records, and Internet search trends. These sources contribute diverse insights into population health, behaviors, and trends. By aggregating and processing these data streams, AI establishes a comprehensive and dynamic understanding of the health landscape, enhancing the ability to identify anomalies and potential disease indicators (43).

- **Pattern recognition and anomaly detection:** Through machine learning algorithms, AI discerns patterns, relationships, and anomalies within the data. This allows AI systems to establish baseline patterns of normal health behavior and recognize deviations that may

Q&A on artificial intelligence for supporting public health

10
indicate the onset of a disease outbreak. These deviations could manifest as a sudden surge in social media posts mentioning certain symptoms, increased healthcare facility visits, or a spike in Internet searches related to specific illnesses (44).

- **Real-time surveillance, monitoring, and early alerts**: AI operates in real time, continuously monitoring and analyzing incoming data streams. This immediate processing capability enables AI systems to promptly detect any unusual or unexpected shifts in health-related data patterns. When a potential outbreak signal is identified, AI triggers early alerts, providing public health authorities with crucial information to investigate further and initiate rapid response protocols (45).

- **Predictive modeling and forecasting**: AI does not merely detect ongoing outbreaks but can also forecast potential outbreaks based on historical data, environmental factors, and social behaviors. Machine learning models trained on past outbreak data can generate predictive scenarios, enabling public health officials to proactively allocate resources, devise intervention strategies, and implement targeted public health campaigns to mitigate the impact of an impending outbreak (46).

- **Situational awareness and decision support**: AI furnishes public health authorities with comprehensive situational awareness by consolidating and presenting relevant data coherently. This empowers decision-makers to make well-informed choices swiftly. AI-driven dashboards and visualizations provide a clear overview of disease trends, enabling authorities to allocate resources effectively and implement appropriate preventive measures, such as quarantine protocols, travel restrictions, and vaccination campaigns (47).

- **Global collaboration and information-sharing**: AI-enabled disease surveillance systems can facilitate global collaboration and information-sharing among public health organizations, researchers, and governments. By quickly disseminating insights and outbreak alerts, AI helps coordinate international responses and minimizes the spread of diseases across borders (48).

What AI-based tools are used to analyze epidemiological data and trends?

AI-based tools used in analyzing epidemiological data include machine learning models for disease prediction, natural language processing (NLP) algorithms for text analysis of medical records, and data visualization tools for displaying trends and patterns in health data. These tools assist public health professionals in gaining insights from complex datasets (49)(50).

How can AI be employed to enhance infectious disease forecasting and modeling?

AI can enhance infectious disease forecasting and modeling by integrating various data sources, such as environmental factors, demographic information, and disease transmission patterns. AI models can analyze this data to predict the spread of infectious diseases, enabling proactive resource allocation and intervention planning (51)(52). Here is a comprehensive expansion on how AI can be employed to enhance these critical aspects:
Data integration and fusion: AI excels in aggregating and analyzing diverse data streams. By assimilating information from sources like environmental sensors, satellite imagery, population density maps, healthcare records, and historical outbreak data, AI-enabled models create a comprehensive picture of the factors influencing disease transmission. This holistic perspective enables a more accurate and nuanced understanding of outbreak dynamics (53).

Complex pattern recognition: Infectious disease outbreaks often exhibit intricate patterns influenced by various variables. AI employs advanced machine learning algorithms to recognize subtle correlations and interactions within the data. By deciphering complex relationships between climatic conditions, human mobility, socioeconomic indicators, and disease transmission rates, AI models can unveil hidden insights that traditional models might overlook (54).

Real-time surveillance and early detection: AI-driven systems continuously monitor and analyze real-time data streams. This enables the rapid detection of anomalies or deviations that could indicate the emergence of an infectious disease outbreak. By promptly identifying unusual patterns in disease incidence, AI facilitates early warning systems, allowing public health officials to initiate swift response measures and prevent further spread (55).

Predictive modeling and scenario planning: AI’s predictive capabilities empower infectious disease modelers to generate forward-looking scenarios. AI models learn from historical data to forecast potential outbreak trajectories based on current conditions. These predictive models enable decision-makers to simulate different intervention strategies, resource allocations, and containment measures, aiding in effective preplanning and resource optimization (56) (52).

Adaptive learning and updating: Infectious disease dynamics can change rapidly due to factors like evolving pathogens, human behavior shifts, and healthcare interventions. AI models can adapt to changing conditions by continuously learning from new data. This adaptability ensures that forecasting models remain relevant and accurate, even in the face of evolving outbreak scenarios (57).

Geospatial analysis and visualization: AI-enhanced geospatial analysis creates dynamic visualizations of disease spread and transmission patterns. These visual representations provide intuitive insights into the geographical distribution of cases, potential hotspots, and trends over time. Such visualizations aid public health officials in making informed decisions about resource allocation and targeted interventions (58) (59).

Resource allocation and intervention planning: AI-optimized forecasts inform resource allocation strategies, guiding the distribution of medical supplies, personnel, and treatment facilities to higher-risk areas. By identifying areas with the greatest need, AI-driven modeling ensures that resources are utilized effectively, ultimately reducing the impact of an outbreak (60) (61).

Communication and public awareness: AI-generated insights can be translated into easily understandable information for public consumption. Visualizations, reports, and real-time updates can help educate the public about disease transmission risks and preventive measures. This proactive communication fosters awareness, compliance with guidelines, and community engagement (62)(63).
How can AI be leveraged to improve vaccination distribution and uptake?

AI can improve vaccination distribution and uptake by predicting demand, identifying high-risk populations, and optimizing distribution logistics. Geospatial AI can be used to identify the target populations for health campaigns, extracting features from satellite imagery and defining priority areas for interventions. AI-powered communication tools can also provide tailored information and address vaccine hesitancy. AI offers a transformative potential to enhance every facet of vaccination distribution and uptake, from resource allocation to overcoming hesitancy. AI contributes significantly to achieving widespread vaccination coverage, thereby protecting public health and contributing to the global effort to control and eliminate infectious diseases. Here is an expanded exploration of how AI can be effectively leveraged for these purposes (64) (65):

- **Demand prediction and supply chain optimization**: AI algorithms can analyze historical vaccination data, population demographics, and epidemiological trends to predict future vaccine demand. By understanding the anticipated demand for different vaccines in various regions, health authorities can proactively adjust their supply chain management, ensuring sufficient doses are available where and when needed. This predictive capability reduces shortages and wastage while promoting efficient resource utilization (66).

- **High-risk population identification**: AI-driven analyses can pinpoint high-risk populations based on factors such as age, existing health conditions, and geographical locations with higher disease prevalence. This identification assists in prioritizing vaccine distribution to vulnerable groups at increased risk of severe illness or complications. By focusing efforts on these populations, AI optimizes the impact of vaccination campaigns (67) (68).

- **Logistics and distribution optimization**: AI-powered algorithms optimize the distribution logistics by considering factors like transportation networks, storage capacities, and real-time data on vaccine availability. This ensures that vaccines are efficiently transported and stored under the appropriate conditions, reducing delays and spoilage. AI-driven route optimization also expedites vaccine delivery to remote or underserved areas (69) (70).

- **Real-time monitoring and allocation adjustment**: AI continuously monitors vaccination progress and uptake rates, enabling real-time adjustments to distribution strategies. Should certain areas experience unexpectedly low uptake or higher demand, AI-driven systems can swiftly redirect resources and adjust distribution plans to ensure equitable access and coverage (71).

- **Vaccine hesitancy mitigation**: AI-powered communication tools engage with the public through personalized and culturally sensitive messaging. By analyzing social media sentiment, online discussions, and public inquiries, AI identifies concerns and misconceptions that contribute to vaccine hesitancy. Tailored information campaigns addressing specific concerns can be designed to increase public confidence and trust in vaccines (72) (73).

- **Appointment scheduling and reminders**: AI-driven scheduling platforms streamline the vaccination process by offering convenient appointment booking options for individuals. Automated reminders can be sent via SMS or e-mail to ensure individuals do not miss their appointments, reducing no-show rates and enhancing overall vaccine uptake (74).
● **Data-driven policy insights**: AI’s data analysis capabilities assist policymakers in refining vaccination strategies. By analyzing vaccination coverage, outcomes, and other relevant metrics, AI can inform evidence-based policy decisions guiding the allocation of resources, adjusting distribution plans, and tailoring communication campaigns to maximize uptake. (75)

What role does AI play in analyzing social determinants of health and addressing health disparities?

AI plays a critical role in analyzing social determinants of health, such as socioeconomic factors, environmental conditions, and access to health care. Understanding these factors helps design targeted interventions to address health disparities among different populations. AI’s involvement in analyzing social determinants of health and combating health disparities is instrumental in advancing equity and improving overall population health, but always keeping in mind that the datasets used to train AI models that perform this task are representative and diverse in terms of gender, ethnicity, age, geographical location, and other relevant factors to avoid biased results in the datasets analysis. (76–78) Here is an expanded exploration of AI’s role in this context:

● **Comprehensive data integration**: AI excels at aggregating and processing vast and diverse datasets encompassing various social determinants of health, including income levels, education, housing conditions, employment status, and neighborhood environments. By integrating this multidimensional data, AI paints a comprehensive picture of the complex interplay between social factors and health outcomes. (79)

● **Pattern recognition and correlation analysis**: AI-powered algorithms are adept at detecting intricate patterns, correlations, and interactions within the data. By scrutinizing social determinants alongside health data, AI identifies connections that might not be apparent through traditional analysis. These insights reveal how specific socioeconomic factors influence health disparities, leading to a more nuanced understanding of the root causes. (76)

● **Identifying vulnerable populations**: AI’s analytical prowess identifies communities or demographics disproportionately affected by health disparities. By pinpointing regions with limited access to health care, subpar living conditions, or inadequate resources, AI helps prioritize interventions and resource allocation to areas with the greatest need. (80)

● **Equitable access to health care**: AI assists in identifying barriers to healthcare access, such as language barriers, transportation challenges, or lack of health literacy. By recognizing these barriers, AI-driven solutions can be developed to facilitate patient navigation, provide multilingual resources, and offer telehealth options, promoting equitable access to quality care. (50)

● **Customized intervention strategies**: AI-generated insights enable tailoring of intervention strategies to address unique challenges different populations face. For instance, if an underserved community lacks access to nutritious food, AI can guide the development of initiatives to establish community gardens or mobile food distribution programs. Such precision ensures that interventions are contextually relevant and effective. (81,82)
Predictive modeling for targeted interventions: AI-driven predictive modeling forecasts the potential impact of interventions across various social determinants. These models simulate different scenarios, allowing policymakers to make informed decisions about where to allocate resources for maximum impact. By identifying the interventions most likely to reduce health disparities, AI optimizes resource utilization. (83)

Real-time monitoring and evaluation: AI continuously monitors and evaluates the effectiveness of interventions in real time. By analyzing outcomes and adjusting strategies based on ongoing data analysis, AI ensures that intervention efforts remain aligned with changing community needs and evolving health disparities. (1,50)

Policy and decision support: AI-generated insights inform evidence-based policy development and decision-making. Policymakers can utilize AI analysis to advocate for targeted interventions, allocate funding for community programs, and shape regulations that address the social determinants of health and reduce disparities. (1) (2) (3,50)

Can AI help in predicting and preventing noncommunicable diseases? If so, how?

Yes, AI can assist in predicting and preventing noncommunicable diseases (NCDs) by analyzing risk factors, genetic data, and lifestyle patterns. Early identification of individuals at risk allows for targeted preventive measures and interventions. AI’s capabilities to analyze diverse datasets, recognize patterns, and generate personalized insights empower healthcare professionals and individuals to predict and prevent NCDs effectively. By identifying at-risk individuals, tailoring prevention strategies, and fostering behavior change, AI contributes to a paradigm shift toward proactive, data-driven health care that ultimately reduces the burden of noncommunicable diseases. (84,85)

Here is a detailed expansion on how AI can contribute to this endeavor:

- Risk factor analysis: AI algorithms can analyze extensive datasets encompassing medical records, lifestyle behaviors, and environmental factors. By identifying correlations and patterns within this data, AI discerns risk factors associated with NCDs, such as heart disease, diabetes, and cancer. This enables healthcare providers to offer timely interventions and guidance to individuals predisposed to these conditions. (86)

- Genetic insights: AI-powered genetic analysis can unravel intricate genetic predispositions to NCDs. By studying an individual’s genetic makeup, AI identifies genetic markers that increase susceptibility to certain diseases. With this information, healthcare professionals can offer targeted screenings, personalized prevention strategies, and early interventions to effectively manage genetic risks. (87)

- Behavioral and lifestyle patterns: AI mines data from wearable devices, fitness trackers, and health apps to scrutinize individual lifestyle patterns. By analyzing sleep quality, physical activity, dietary habits, and stress levels, AI generates insights into behavior-driven NCD risk factors. These insights empower individuals to make informed lifestyle changes and healthcare providers to deliver tailored recommendations. (86,88)
Early disease detection: AI employs predictive modeling to forecast the likelihood of NCD development based on an individual’s unique profile. By factoring in multiple variables, including genetics, lifestyle, and medical history, AI can identify individuals at higher risk of NCDs. Early detection allows for proactive monitoring, timely medical interventions, and the implementation of preventive strategies. (89)

Personalized prevention plans: AI generates personalized prevention plans by integrating individual health data, risk factors, and genetic information. These plans include recommendations for lifestyle modifications, regular screenings, and targeted interventions. Personalization ensures that prevention strategies align with an individual’s unique needs and circumstances, improving adherence and effectiveness. (90)

Continuous monitoring and feedback: AI-powered health monitoring platforms provide ongoing feedback and support to individuals. These platforms track health metrics, offer real-time insights, and provide nudges to encourage healthy behaviors. Regular monitoring enables individuals to stay engaged in their health management and make timely adjustments to reduce NCD risk. (89,90)

Population health management: On a broader scale, AI assists public health authorities in identifying trends and patterns related to NCD prevalence within populations. By analyzing large-scale data, AI helps policymakers target resources, develop public health campaigns, and allocate funding to areas with the highest NCD burden. (90)

Research and drug development: AI accelerates research efforts by analyzing vast datasets to identify potential therapeutic targets for NCDs. It expedites drug discovery and development, aiding in the creation of innovative treatments and interventions to prevent or manage these diseases. (42,91)

How could AI assist with the tracking of substandard and falsified (fake) medicines that are in circulation in a country?

AI can play a significant role in tracking and raising awareness to the circulation of substandard and falsified medicines within a country. The below points are related only to the vigilance of falsified and substandard medicines and does not consider the circulation of counterfeit medicines, which AI most probably could also support with regard to improved vigilance. (92–94)

Below are some ways in which AI can support more active vigilance of falsified and substandard medicines:

- **Data analysis**: AI algorithms can analyze large volumes of data from various sources, such as sales records, supply chains, and regulatory data, to identify patterns that might indicate the presence of counterfeit medicines. This could involve detecting unusual purchasing trends, identifying discrepancies in distribution routes, or flagging irregularities in product labeling. It is important to note however that not all countries have robust logistics management information systems for medicines to facilitate this analysis, or cross-border analysis in the case of “suitcase trading of” medicines for example. (95,96)
Image recognition: AI-powered image recognition systems can be used to verify the authenticity of packaging and labels. By comparing images of genuine products with suspected counterfeits, the system can quickly identify visual discrepancies or inconsistencies. QR codes and other markers with layered security markers could facilitate easy verification of genuine medicines by consumers and peace of mind in countries with weak regulatory systems. (97)

Natural language processing (NLP): AI-powered NLP can analyze social media, online marketplaces, and forums to identify discussions related to fake medicines. It can help authorities understand the scale of the problem, gather leads, and identify potential sources. For example, discussions about medicines that are unusually priced (too cheap or too expensive) can be identified via NLP platforms and spark the need for further investigation. (96,98)

Predictive analytics: AI can predict potential locations and instances of fake medicine distribution based on historical data and patterns. This information can be used to allocate resources effectively and focus efforts where they are most likely to be effective. As mentioned above, this could be especially important for countries that share a border or for those that have porous borders, making it difficult for regulatory authorities to monitor. (96,99)

Real-time monitoring: AI can monitor online marketplaces, e-commerce websites, and social media platforms in real time to identify listings or posts advertising fake medicines. This proactive approach can lead to quicker identification and removal of these listings. This is especially important in countries with limited capacity to engage in active surveillance of falsified and substandard medicines but where there is an active online sales community.(99,100)

Collaborative networks: AI-powered systems can facilitate information-sharing among relevant stakeholders, such as regulatory bodies, law enforcement agencies, patient associations, pharmaceutical companies, and healthcare providers. This collaboration enhances the ability to track and combat the circulation of falsified and substandard medicines effectively. For any active surveillance network to be effective, a multisectoral approach is needed, which includes patients themselves and their representative associations. (101)

How can AI support continuous learning among healthcare workers for professional development despite their very busy schedules?

AI can provide substantial support for adult learning among healthcare workers by offering personalized, flexible, and interactive learning experiences. This was particularly pronounced during the COVID-19 pandemic when health providers were required to learn new skills and refresh their knowledge on the basics for responding to what was first an outbreak of a highly infectious disease. (38,41,102,103)Some ways in which AI can help to meet the learning needs of busy healthcare workers include the following:

Personalized learning paths: AI can analyze the learning history, knowledge gaps, and individual preferences of healthcare workers to create personalized learning paths. This ensures that each learner receives content that is relevant to their current skill level and needs. Of course, this would require that the health worker has his/her own computer or device for online learning to facilitate the tracking of his/her learning history. This is not always the case.
and many health workers share devices for learning or use their phones for connecting to online platforms while off duty. (102,103)

- **Adaptive learning**: AI-powered platforms can adapt the difficulty and pace of learning modules based on the learner’s progress. This keeps learners engaged by challenging them appropriately and preventing boredom or frustration. AI can also recommend short or minicourses that will adapt well to their busy schedules and optimize the time they have for learning. This is especially important for not only the learners but also the developers of these learning programs, so that they recognize the different levels of learners and not consider adult learners a homogeneous group. (102–104)

- **Interactive simulations**: AI can simulate real-world healthcare scenarios, allowing learners to practice decision-making, critical thinking, and problem-solving in a safe environment. This approach enhances practical skills without putting patients at risk. These simulations need also to be supervised by faculty who are adept at the technology being used. This requires investments in training of medical and nursing faculty in the use of AI along with their students. (105)

- **Virtual patient cases**: AI can generate virtual patient cases with various medical conditions, enabling healthcare workers to diagnose and treat patients in a virtual setting. This practical experience enhances clinical reasoning skills. While such examples may be helpful for testing medical skills, it would be important for the virtual patients to also reflect the heterogeneity of the people served by these health workers to improve patient–provider communications, dispel racial stereotypes, and promote greater inclusiveness. (102)

- **Learning analytics**: AI-driven analytics can provide insights into learning trends, completion rates, and areas of difficulty. Institutions can use this data to refine their training programs since AI would be able to facilitate deeper analysis on content retention, levels of distraction during learning, and possibly, the reasons for noncompletion of courses. (102)

What are the ethical considerations that must be taken into account when it comes to AI in public health?

Ethical considerations in using AI in public health involve data privacy, transparency, and the responsible use of AI-driven insights. Potential biases in AI algorithms must be addressed to ensure fair and equitable healthcare decision-making for all populations. (106) Here is an in-depth exploration of these issues:

- **Data privacy and informed consent**: The utilization of AI in public health often involves processing sensitive personal health data. Safeguarding individuals’ privacy and ensuring proper informed consent become paramount. It is essential that individuals understand how their data will be used and their consent is obtained in a transparent and understandable manner. (106,107)

- **Transparency, explainability, and intelligibility**: AI must be intelligible or understandable; AI technologies must be explainable to the extent possible and according to the capabilities of those to whom the explanation is directed. To ensure the transparency of this technology, information about the design and implementation of the AI technology should be published or

Q&A on artificial intelligence for supporting public health
documented. Transparency will improve the quality of the system and protect patient safety and public health. (67)

- **Responsibility and accountability**: AI systems should clearly specify the tasks they can perform and the conditions under which they can achieve the desired level of performance, to ensure that AI can be used responsibly. Accountability ensures that individuals and entities are held accountable for any adverse effects of their actions and is necessary to maintain trust and protect human rights. (41,108,109)

- **Responsible use of insights**: While AI can provide valuable insights, human judgment remains indispensable. Overreliance on AI-generated recommendations could undermine clinical expertise and shared decision-making between healthcare professionals and patients. The responsible integration of AI-generated insights involves using them as tools to enhance, rather than replace, human decision-making. (106)

- **Equity and access**: The deployment of AI in public health must prioritize equitable access to its benefits. Ensuring that underserved populations, marginalized communities, and vulnerable individuals receive equal access to healthcare services and AI-driven insights is crucial to prevent exacerbating existing healthcare disparities. (110)

- **Surveillance and profiling**: This topic raises ethical concerns in relation to privacy and autonomy. So, to avoid unwanted situations, it will be essential that AI systems are trained to collect only the information necessary for the specific purpose that is being worked on. If we do not pay due attention to this issue, we could give significant power to those who have access and control over these systems. (106,111)

What are the potential biases associated with using AI in public health?

Integrating AI into public health introduces a host of potential biases that demand careful attention and mitigation strategies (67). Here is an in-depth exploration of these issues:

- **Data bias and representational inequity**: AI algorithms learn from historical data, which may carry inherent biases present in the data. If the data used to train AI models are not diverse or representative, the algorithms can perpetuate and amplify these biases, leading to unequal treatment and suboptimal care for certain groups. (112)

- **Algorithmic bias and fairness**: Bias can emerge in AI algorithms due to biased training data, flawed design, or unintended correlations. These biases can result in differential treatment recommendations, misdiagnoses, or unequal allocation of resources across different demographic groups. (112)

- **Health disparities and amplification**: If AI algorithms are trained on data that reflect existing health disparities, they may inadvertently perpetuate these disparities by reinforcing existing patterns of care. Such algorithms could inadvertently allocate resources, interventions, and attention disproportionately, exacerbating inequalities. (110)

- **Cultural and socioeconomic sensitivity**: AI algorithms might not fully understand the cultural, socioeconomic, and contextual nuances that influence health decisions. Ignoring these
factors could lead to misunderstandings, ineffective interventions, or inadequate patient engagement. (110)

- **Interpretability and clinical autonomy**: Complex AI models can be challenging to interpret, making it difficult for healthcare professionals to trust and validate their outputs. This lack of interpretability can erode clinical autonomy and hinder effective collaboration between AI systems and human practitioners. (109)

What measures are needed to ensure data privacy and security when using AI in public health?

Strict data privacy and security measures, such as encryption, access controls, and compliance with data protection regulations, are essential to safeguard sensitive health information when using AI in public health. Ethical data sharing practices are also emphasized. (43,107,113) Other aspects to be considered are: the anonymization and de-identification of personally identifiable information to protect individual privacy; obtaining informed and explicit consent from individuals whose data will be used for AI research or applications; establishing a robust data governance framework that includes policies, procedures, and responsibilities for data management and security; using secure and well-maintained data storage systems with encryption, access controls, and regular security audits; conducting regular security assessments and audits to identify vulnerabilities and address them promptly; training employees and contractors on data privacy and security best practices to minimize the risk of accidental data breaches. Collaboration with cybersecurity experts and legal professionals can also be invaluable in ensuring compliance with regulations and best practices. This collaboration may take the form of a policy observatory to identify and analyze relevant policies and laws and also, to issue model legislation, which, as a reference for governments developing their own laws, can ensure adequate protection, regulations, rules, and safeguards, building trust with the general public, providers, and patients in the use of AI. (22,54,107,113,114)

How does AI assist in medical image analysis and diagnosis, and what are its benefits for healthcare providers?

AI assists healthcare providers in medical image analysis by automating the detection of abnormalities and assisting in diagnosis. It reduces the time and effort required for image interpretation, leading to quicker and more accurate diagnoses, and ultimately improving patient care. (113,115)

What are some examples of AI-driven applications in patient care and treatment planning?

AI-driven applications have the potential to significantly enhance patient care and treatment planning in health care, such as personalized treatment plans based on patient data and medical history, medication dosage optimization, and real-time patient monitoring. These applications improve treatment outcomes and patient experiences.
These AI-driven applications aim to improve the quality of care, reduce costs, and enhance patient outcomes. However, it is important to integrate AI technologies thoughtfully into healthcare systems, ensuring that they complement and support the expertise of healthcare providers while maintaining patient privacy and data security. (6,113,115)

How can AI support decision-making processes for healthcare policymakers and administrators?

AI can support decision-making processes for healthcare policymakers and administrators by analyzing vast amounts of healthcare data, identifying trends, and predicting demand patterns. It provides valuable insights to guide policy development and resource allocation.

As already mentioned, one of the potentialities of AI to collaborate in macro-management is in the monitoring and prediction of infectious disease outbreaks, as well as in the reduction and control of noncommunicable diseases in the population. Also, healthcare systems can use AI tools to achieve greater efficiency in administrative tasks, such as using maintenance data to predict machine or equipment failures and request estimates, or to use NLP to extract data from reports or automatically fill out registration reports, which could reduce labor costs. (42,43,45,60,116)

What challenges and limitations should be considered when implementing AI in the public health domain?

Challenges in implementing AI in public health include data quality issues, limited access to comprehensive datasets, algorithmic biases, and the need for skilled personnel. Overcoming these challenges is crucial for successful AI integration. The main barriers to the development of AI in health in the Latin America and Caribbean region are, in general terms, the absence of a steering role in AI and the lack of implementation of: regulations that integrate all stakeholders, electronic health data, programs that promote technological development, a budget designated for AI, trained personnel, and research on the application of AI in health. (16,40,41,60,68,91,106,107,117)

How can AI-powered chatbots and virtual assistants assist in providing reliable health information to the public?

AI-powered chatbots and virtual assistants provide the public with accessible and reliable health information. They can answer common health-related queries, offer self-assessment tools, and direct individuals to appropriate healthcare resources. We want to emphasize that it is important when a chatbot interacts directly with patients that it should identify itself as an artificial system.(22,40,107,118)

What actions are needed to ensure AI algorithms are transparent and explainable for regulatory purposes in public health?

Achieving transparency and explainability of AI algorithms for regulatory purposes in public health involves a combination of technical measures, documentation, testing, and stakeholder engagement. AI developers and public health authorities must create trustworthy and accountable
AI systems that contribute positively to public health outcomes (119,120). Here is an explanation of the actions needed to achieve this:

- **Algorithm documentation**: Detailed documentation of AI algorithms, including their design, architecture, and decision-making processes, should be provided. This documentation should be easily accessible to regulators, policymakers, and relevant stakeholders, allowing them to understand how the algorithm functions. (121)

- **Clear model descriptions**: Algorithms should be described in a clear and understandable manner, avoiding complex technical jargon. Clear explanations of how input data are transformed into output predictions or recommendations should be provided, enabling regulators to comprehend the algorithm’s logic. (122,123)

- **Feature importance and contribution**: AI algorithms should disclose the significance of different features or variables in influencing the algorithm’s outcomes. This helps regulators understand which factors drive the algorithm’s decisions and assess potential biases or confounding factors. (124)

- **Bias and fairness assessment**: AI algorithms should undergo thorough bias and fairness assessments to identify and mitigate any potential discriminatory effects. Transparent reporting of these assessments allows regulators to evaluate the algorithm’s impact on different demographic groups and ensure equitable outcomes. (125,126)

- **Model validation and testing**: Rigorous testing and validation of AI algorithms against diverse datasets should be conducted. Regulators need access to these validation results to verify that the algorithm performs reliably across various scenarios and populations. (127,128)

- **Explainability techniques**: Implement explainability techniques, such as feature visualization, saliency maps, or local interpretations, to provide insight into how the algorithm arrives at specific predictions or decisions. These techniques enhance transparency by making the algorithm’s reasoning more interpretable. (127,129)

- **Interpretable model selection**: Choose AI models that inherently offer greater explainability, such as decision trees, rule-based systems, or linear models. While more complex models, such as deep neural networks, can provide high accuracy, they can be challenging to interpret, especially for regulatory purposes. (79,128)

- **External audit and review**: Independent external audits or third-party reviews of AI algorithms can provide an unbiased evaluation of their transparency and explainability. Regulators can rely on these assessments to ensure that algorithms meet the necessary standards. (130)

- **Regular updates and monitoring**: AI algorithms should be subject to continuous monitoring and updates. Regulators need to be informed about any changes or improvements made to the algorithm’s design and their potential implications for public health decisions. (131)
• **Stakeholder engagement**: Engage with public health experts, ethicists, regulators, and the community to gather diverse perspectives and insights. Involving stakeholders in discussions about AI transparency and explainability fosters a collaborative approach to ensuring regulatory compliance. (132,133)

How is AI being used in contact tracing efforts during disease outbreaks?

AI is employed in contact tracing efforts by analyzing data from various sources, such as smartphone applications and GPS data, to identify and notify potential contacts of infected individuals. For instance, AI-powered mobile applications use Bluetooth and location data to monitor and record interactions between individuals. If a user tests positive for the disease, the app can alert individuals who may have been in close proximity to the infected person, allowing them to self-isolate or get tested. This helps contain the spread of disease. (37,134,135)

How can AI be utilized to optimize healthcare resource allocation and management?

AI can optimize healthcare resource allocation and management by analyzing patient data, disease prevalence, and healthcare utilization patterns. This enables healthcare providers to allocate resources more efficiently and improve overall healthcare delivery. For example, AI can analyze historical data, such as patient admission rates and disease prevalence, to predict future healthcare demands. This helps hospitals and clinics allocate resources, including staff and beds, more effectively to meet patient needs. Besides, AI can monitor inventory levels in real time and predict when medical supplies and pharmaceuticals need to be replenished. This prevents shortages and reduces waste. (82,108,136,137)

What are the future trends and advancements expected in AI applications for public health?

Future trends in AI applications for public health may include more advanced AI algorithms, increased use of Internet of Things (IoT) devices for data collection, and improved predictive analytics for better disease forecasting and intervention planning. In the evolving landscape of AI applications for public health, the integration of IoT devices is set to play a pivotal role, ushering in a new era of data-driven precision and proactive healthcare management. IoT, a network of interconnected physical devices embedded with sensors, promises to revolutionize public health practices by providing real-time, granular data that empower individuals and healthcare systems. The synergy between AI and IoT has the potential to amplify the effectiveness of disease prevention, early detection, and intervention strategies. As IoT devices become increasingly ubiquitous, they will create an intricate web of health-related data points, ranging from wearable fitness trackers and smart thermometers to implantable medical devices and environmental sensors. This wealth of data will form a comprehensive health ecosystem, enabling AI algorithms to extract meaningful insights and patterns that were previously inaccessible. (50,102,138)
How can governments and health agencies foster responsible AI adoption in the context of public health?

Governments and health agencies can foster responsible AI adoption by establishing clear regulations, ethical guidelines, and data governance frameworks. Collaboration between public health experts and AI developers is essential to align AI applications with public health priorities. (106,139,140)

What are the potential cost savings and economic benefits associated with integrating AI into public health practices?

Integrating AI into public health practices offers a range of potential cost savings and economic benefits that extend far beyond the immediate implementation. The cost savings optimize resource allocation, improving disease surveillance, and streamlining healthcare processes; the economic benefits encompass better health outcomes, reduced healthcare burden, increased productivity, and enhanced innovation. Here is an expanded exploration of these advantages (141,142):

- **Optimized resource allocation**: AI-driven predictive models help public health officials anticipate disease outbreaks, enabling more efficient allocation of resources, such as medical supplies, personnel, and facilities. This proactive approach reduces wastage, ensures adequate availability, and lowers the costs associated with emergency response efforts. (82)

- **Enhanced disease surveillance**: AI’s ability to analyze vast amounts of data from various sources, such as social media and healthcare records, enhances disease surveillance accuracy. Rapid identification of outbreaks leads to early containment and reduced expenditure on containment measures and healthcare resources during widespread outbreaks. (50,142)

- **Streamlined healthcare processes**: AI automates routine tasks like appointment scheduling, billing, and administrative duties, freeing healthcare professionals to focus on more complex and value-added activities. Streamlined processes lead to improved operational efficiency, reduced administrative costs, and increased patient throughput. (91)

- **Preventive interventions and early detection**: AI aids in identifying high-risk individuals and predicting disease risks, allowing for timely preventive interventions. By addressing health issues at an early stage, public health systems reduce the need for expensive treatments and hospitalizations, resulting in substantial cost savings. (142)(141,143)

- **Healthcare system optimization**: AI-driven insights enable healthcare providers to optimize patient care pathways, reducing unnecessary hospital admissions and readmissions. This lowers overall healthcare costs, ensures better patient outcomes, and enhances patient satisfaction. (107)

- **Reduced healthcare burden**: AI-powered telehealth and remote monitoring solutions enable proactive management of chronic conditions and early detection of health issues. This leads to reduced hospitalizations, emergency room visits, and associated healthcare costs. (144)
Improved decision-making and resource management: AI-generated data insights inform evidence-based decision-making, leading to more informed allocation of funds, personnel, and interventions. This strategic resource management contributes to cost savings and effective utilization of available resources. (82,144)

Research and drug development acceleration: AI expedites drug discovery and clinical trials by analyzing vast datasets and identifying potential drug candidates. Faster development and approval of innovative treatments lead to improved health outcomes and reduced long-term healthcare costs. (145)

Socioeconomic benefits: Better health outcomes resulting from AI-driven interventions lead to a healthier population with enhanced productivity. Reduced absenteeism and increased workforce participation contribute positively to economic growth.(146)

Technological advancement and innovation: Integrating AI in public health practices fosters technological innovation, attracting investment and fostering collaborations with the private sector. This innovation-driven environment can lead to economic growth and job creation in the technology and healthcare sectors.(147)

How does AI contribute to behavioral health research and mental health support?

AI contributes to behavioral health research by analyzing large datasets to understand mental health trends and risk factors. AI-powered mental health support platforms offer personalized interventions and remote counseling services to individuals in need. AI plays a transformative role in advancing behavioral health research and providing comprehensive mental health support. Here is a detailed expansion of how AI contributes to these critical aspects (148) (149–152):

- Mental health trend analysis: AI processes vast amounts of behavioral and psychological data, such as social media posts, online forums, and electronic health records to identify patterns and trends in mental health. By analyzing language, sentiment, and contextual cues, AI helps researchers gain insights into evolving mental health concerns, enabling the identification of emerging issues and informing public health policies. (153)

- Risk factor identification: AI algorithms analyze various factors – genetic, environmental, social, and lifestyle – to identify individuals at risk of mental health disorders. These algorithms detect subtle correlations and interactions contributing to mental health conditions, guiding targeted interventions and preventive strategies. (154)

- Early detection and intervention: AI-powered tools monitor changes in an individual's digital behavior, such as social media activity and communication patterns, to identify potential signs of distress or decline in mental health. Early detection enables timely intervention, connecting individuals with appropriate support before their conditions worsen. (149)

- Personalized treatment planning: AI analyzes individual data – such as medical history, behavior, and treatment responses – to tailor treatment plans for mental health conditions. By
considering a person’s unique characteristics, AI ensures interventions are aligned with their specific needs, enhancing treatment effectiveness. (149)

- Therapeutic chatbots and virtual assistants: AI-driven chatbots offer immediate and accessible support for individuals experiencing mental health challenges. These virtual assistants engage in conversations, provide coping strategies, and offer emotional support, complementing traditional therapeutic approaches and reducing barriers to seeking help. (150)

- Remote counseling and teletherapy: AI-enabled teletherapy platforms connect individuals with licensed mental health professionals through remote sessions. AI assists therapists by analyzing speech patterns and emotional cues, facilitating a better understanding of clients’ emotional states, and tailoring interventions accordingly. (150)

- Sentiment analysis and emotional well-being monitoring: AI analyzes text, voice, and facial expressions to assess emotional well-being and detect changes in mood or distress levels. Continuous monitoring provides valuable insights to individuals and clinicians, facilitating timely interventions and personalized support. (151)

- Data-driven research insights: AI synthesizes data from various sources to generate research insights, informing the development of evidence-based mental health interventions. These insights contribute to a deeper understanding of mental health challenges, treatment efficacy, and the impact of social determinants. (155)

- Stigma reduction and accessibility: AI-powered mental health tools provide confidential and nonjudgmental support, reducing the stigma associated with seeking help. Moreover, AI-driven platforms increase accessibility by providing support anytime and anywhere, addressing geographical barriers and enhancing mental health care equity. (152)

- Continuous monitoring and long-term support: AI-enabled systems offer continuous monitoring and long-term support, helping individuals manage their mental health over time. By providing ongoing guidance, resources, and coping strategies, AI contributes to sustained mental well-being. (152)

Key messages

- AI can assist in disease surveillance, early outbreak detection, analyzing epidemiological data, optimizing resource allocation, and improving patient care, enhancing decision-making processes for policymakers and administrators, contributing to more efficient and effective public health interventions.

- Machine learning, as well as deep learning, hold significant importance in the formulation of public health policies due to its ability to analyze vast amounts of healthcare data and derive valuable insights, identifying patterns, trends, and potential risk factors associated with various health conditions and diseases, and supporting the identification of vulnerable populations and health disparities, facilitating targeted interventions to address specific healthcare challenges.
• Understanding the concept of hallucinations is critical in the use of AI tools in public health because it helps distinguish between genuine signals and erroneous data generated by the AI algorithms, ensuring the accuracy and reliability of AI-driven insights, and preventing potential misinterpretations that could lead to incorrect decisions or interventions.

• A prompt is a specific input or instruction given to a language model or artificial intelligence system to generate a response or output, guiding the AI to produce coherent and contextually appropriate answers, facilitating data analysis, decision-making, and problem-solving in public health initiatives.

• Generative AI, or generative artificial intelligence, refers to a type of artificial intelligence system that is capable of generating new content, such as text, images, or other media, in response to prompts or inputs, creating innovative applications in public health, such as generating personalized patient education materials.

• AI-driven applications in vaccination coverage include predictive modeling, vaccine distribution optimization, vaccine hesitancy analysis, vaccine reminder systems, real-time monitoring and surveillance, and vaccine adverse event monitoring, enhancing public health efforts by improving immunization rates, optimizing resource allocation, addressing vaccine hesitancy, and ensuring timely and effective vaccination strategies.

• The successful implementation of generative AI in public health is essential to transform medical care and disease diagnosis, but there are several technology infrastructure challenges that must be taken into account for its implementation, such as data management, computational resources, network bandwidth, data security and privacy, interoperability, and scalability.

• It will be extremely important to have a workforce trained to manage AI infrastructure, as well as develop and retain talent capable of designing, operating, and troubleshooting AI infrastructure.

• Ethical considerations include addressing potential biases, ensuring data privacy and security, promoting transparency and explainability of AI algorithms for regulatory purposes, safeguarding public trust, and ensuring the best possible outcomes for healthcare interventions and policies.

• Future trends include advancements in medical image analysis, optimization of healthcare resource allocation, and the integration of AI in behavioral health research and mental health support, fostering a deeper understanding of AI’s potential in shaping the future of health care.

• Governments and health agencies can foster responsible AI adoption by establishing guidelines, regulations, and frameworks that promote transparency, accountability, and ethical use of AI in public health.

• While AI tools have great potential in several aspects of public health, it should be used as a support for healthcare providers, not a replacement. It is crucial to integrate AI solutions
thoughtfully within the health systems and in collaboration with healthcare professionals to ensure that they align with clinical workflows and patient needs.

IV. Official documents and reports

- **World Health Organization**. Ethics and governance of artificial intelligence for health: Guidance on large multi-modal models [Internet] 2024 [cited 2024 Feb 12]. Available from: https://www.who.int/publications/i/item/9789240084759

- **Inter-American Development Bank**. Responsible and widespread adoption of artificial intelligence in Latin America and the Caribbean [Internet] [accessed 2023 Sep 28] Available

V. References

Q&A on artificial intelligence for supporting public health

Q&A on artificial intelligence for supporting public health

54. MacIntyre CR, Lim S, Quigley AL. Preventing the next pandemic: Use of artificial intelligence for epidemic monitoring and alerts. 2022Dec1;3(12)

60. Rana MS, Shuford J. AI in Healthcare: Transforming Patient Care through Predictive Q&A on artificial intelligence for supporting public health

Q&A on artificial intelligence for supporting public health

81. Talati KN, Parikh SM. Big Data and Public Health: Avenue for Multidisciplinary Collaborative Research. In IGI Global; 1AD.

communicable-diseases-using-artificial-neural-networks

85. Castañeda WAC, Filho PB. Towards an Artificial Intelligence Based Chronic Disease Management. 2023 Apr 18 [cited 2024 Feb 16]; Available from: https://www.preprints.org/manuscript/202304.0491/v1

97. Chen CW, Tsai AC, Chang WY, Huang HF, Wang JF. Arbitrary Axis-aligned and Multi-

Q&A on artificial intelligence for supporting public health
Q&A on artificial intelligence for supporting public health

Q&A on artificial intelligence for supporting public health
Q&A on artificial intelligence for supporting public health

143. Hutchinson D, Kunasekaran M, Quigley AL, Moa A, MacIntyre CR. Could it be monkeypox? Use of an AI-based epidemic early warning system to monitor rash and fever illness. 2023Jun14;220.

146. Monselise M, Yang CC. AI for Social Good in Healthcare: Moving Towards a Clear Q&A on artificial intelligence for supporting public health

In this thoughtfully curated knowledge capsule, you will encounter a symphony of insights – where technology harmoniously blends with human expertise to shape the future of public health. Each question invites you to immerse yourself in the dialogue between AI and human minds, creating a synergy that promises to transform health care as we know it. This document is not intended to be a scientific article. It was developed as a reference tool to support the exchange of information and promote open conversations and debates among experts. In this sense, this document is not intended to be a comprehensive guide or handbook on AI for supporting public health.