NINTH MEETITNG OF THE
ADVISORY COMMITMEX ON MEDICAL RESEARCI
Washington, D.C. 15-19 June 1970

A BLRPM-I.ITH-DEAPH MODEL
FOR THE EVALJATION AND PLANNING OI A HEALTHI SERVICES PROGRAM
(Item 6 of the Agenda)

Page
Introduction and Objectives of the Study 1.
The System 2
The First Model 5
The Second Model 9
Experimentation 10
Discussion: Results in the Transient Situation 14
Discussion: Results in the Steady State 28
Conclusion 33
APPENDIX I 35
APPENDIX II 38
APPENDIX III 40

The decision-maker is faced with the problem of lack of resources and the need to assign them multiply. If the consequences, i.e. outcomes, that result from the various possible changes of the decision variables were known, the problem would resolve itself in terms of selecting those changes that effect the most desirable results in terms of cost and/or effectiveness criteria.

In the real world, most of the decisions confronting a planner involve courses of action whose outcomos are not deterministic. Rather, the behavior of the outcome is best anticipated probabilistically. This is particularly true of actions over time.

The decision-maker wishes to determine which changes of health status and population patterns are most likely to result in desired alterations of morbidity, mortality, and life span (as well as quality of life). Ultimately, he must relate these expected benefits to the cost incurred in making the changes, so that he has a means of evaluatine programs.

The following measures of mortality, life span, and "quality of life" resulting from change of health status and/or population pattern are considered in this paper:

- The age-stratified distribution of the population over time;
- The behavior over time of the number of deaths, by age groups and by causes, with emphasis on the change in the percentage composition;
- The behavior of specific mortality rates by age groups and by causes of death; and
- The fertility rates and population growth rates over time.

[^0]The first phase of the PAHO cost-effectiveness study reported here has the following purposes:

- To develop a comprehensive mathematical model in which changes of decision (or control) variables representing health status and/or population programs are related to changes in the measures of mortality, life span, and quality of life. Such a model involves a Markovian representation of the birth-lifedeath process; and
- To develop a simple mathematical model relating the impact on life expectancy due to changes in decision variables.

The System

A system is defined as "a set of intercommunicating states that constitute a whole."

The birth-life-death process is a system in which the states are the age intervals of lifo and death by causes of disease. The intercommication between the age interval states and the death states is represented in the form of probabilities of death for each cause of death within each age interval. These probabilities determine the over-all survival rate to the next age interval state.

The age intervals correspond to age groups as follows:

Interval
$: \frac{1}{2}$
: 2
3
-
-
17
18

Age eroup
4 and under
5-9
10-14
-
-
80-84
85 or above

In line with customary PAIO practico, tho causes of death are classified into the following groups:
$A=$ Infectious and parasitic diseases, pneumonia, influenza, bronchitis, and gastroenteritis
$B=$ Diseases of early infancy
$C=$ Tumors


```
D = Cardiovascular diseases
E = All others
```

The system is depicted in Figure 1. In this diagram the age states are represented by unshaded circles, and the categories of death by shaded circles with the corresponding letter of identification. The variable X_{i} stands for the ages within the age interval. The intercommunication among categories is shown by arrows. Over the arrows two types of symbols are found:

$$
\begin{aligned}
q_{i j}^{*}= & \text { The estimate of the probability of death due to cause } \\
& \text { of death } j, \text { in age interval } i \\
& (i=1, \cdots, w, \quad j=A, B, C, D, E)
\end{aligned}
$$

and

$$
\begin{aligned}
S_{i, i+1}= & \text { The estimate of the probability of surviving from age } \\
& \text { interval } i \text { to age interval } i+1
\end{aligned}
$$

where w is the number of intervals of age.
Of course, any individual, at any given time, may be in only one state. A system can be either open or closed. A closed system is one without any inputs, i.e. births or immigrations.

Thus the average time experience (or life table) of a single entry (or cohort) may be traced. The model generates the probability distribution of death due to each cause within each age category, and the life expectancy. An open system has both inputs and outputs. The present study embodies an open system, as shown in Figure 1. Inputs in the form of births and outputs in the form of deaths, due to the fjve groups of diseases, are included; however, immigration and migration are not considered. States with arrows pointing both in and out are nonabsorbing itatos in Markov chain terminology. Those with arrows pointing only in (the death states) are called absorbing states.

In finding a solution for the system, one desires knowledge of the dynamic behavior of the numbers and percentages of deaths by causes of disease of the people in the various age interval states, as well as elucidation of the mortality, birth, and growth rates. It is convenient to distinguish. between transient and steady state properties of the solution. A steady state property is one that essentially holds for all time after a certain point in
the future. For our purposes, the steady state situation of interest is one in which the percentage composition of the population by age intervals is a constant. The transient situation is that period in time before the steady situation is entered.

Two sets of decision variables control our system:

- Specific mortality rates by age intervals and groups of diseases (abbreviated hereafter as SMRAC)
- Specific fertility rates by age interval (hereafter SFRA)

For any change in the set of decision variables representing a projected change in the health services system, the vital statistics in the steady state situation are particularly useful measures for characterizing the impact, since they predict the more of less permanent effect of the change. For example, the impact of changing specific fertility rates alone will alter the age distribution of the population, which in turn will alter the total death rates for each disease grouping; however, a steady state total death rate for each group will be approached as time goes on. This ligure will be one of importance in planning the needed new program effort in each disease group.

Changes affecting the health status of the population imply modification of the decision variables (SMRAG's and SFRA's). On the other hand, a change in the level of the SMRAG's and/or SPRA's may be viewed as an experiment in which the outcome is measured in terms of the impact on one or more of the population structures, mortality structures, or quality of life (chosen as criteria of impact for the experiment). The experiment is simulated by applying the birth-life-death process model derived in this study. Thus an experimental design program for obtaining optimal conditions using any given criteria can be carried out via simulation.

The First Model

The mathematical model considered adequate to analyze mortality structures by groups of causes of death and other vital statistics within each time interval, for an arbitrary iength of time into the future, incorporates a finite Markov chain with absorbing barriors (the five states of death) and a forcing function representing births.

Table 1-A
MRANSITION PROBABILITY MATRIX
Stage $t+1$

Table 1-B
INITIAL STATE VECHOR
$D_{0, A} \quad$ Number of deaths in Group A
$D_{O, B} \quad$ Number of deathis in Group B
$\mathrm{D}_{\mathrm{O}} \mathrm{C} \quad$ Number of deaths in Group C
$D_{O, D} \quad$ Number of deaths in Group D
$D_{O, E} \quad$ Number of deaths in Group E
WO,1 Population in State 1
$W_{0,2} \quad$ Population in State 2

Population in State 18

The salient characteristics of the model are (1) that it ropresents a dynanic process in time in which transitions between age brackets, and to various types of death, occur probabilistically; and (2) that the outcomo at each stage in time depends only on the outcome at the previous stage in time and on the transition probabilities plus birth rates.

The model is the analytical representation of the system depicted in Tigure 1. The number of entries into each circle at each stage in time is determined by applying matrix C, given in lable $1-A$, to the state vector, whose components are the numbers of people in each circle during the previous stage in time.

The initial stage, represented by numbers of people in each circle at the initial time for the system, is given in Table l-B. To denotes the state vector at this time $(t=0)$ and T_{t} denotes the state vector at any time (t) thereafter.

Matrix C in Table l-A has an upper left-hand submatrix symbolized by I. The five rows of this submatrix have all zero elements except a in the column entry having the same letter as the row. This simply means that the probability of remaining dead is one, or certain-i.e. a person dead at any given stage remains dead throughout all future stages. The submatrix directly to the right of this submatrix contains all zeroes and is symbolized by 0 .

The rows beneath the first five may also be thought of as being split into two submatrices, one to the left and one to the right. The left submatrix contains the elements ($\mathrm{q}_{\mathrm{i} j}$), which are the probabilities of death due to a group of causes (j) for members of a given age bracket (i) during a fundamental time period of length equal to the longth of tho age brackets--in these examples, five years. This submatrix, denoted by Q, is the absorption matrix. The entries of this sumatrix are estimated by formulas involving the specific mortality rates (see Appendix I) by age interval and group of causes of death.

The lower right-hand submatrix has elements $S_{i, i+1}$ directly above the diagonal, which are the probabilities of an individual in each bracket (i) surviving a fundamental time period and thus entering the next age bracket (i + 1). Ir all other elements of this lower right-hand submatrix are zero,
then it is called the surviving submatrix $\underset{\text {, and }}{ }$ the submatrix is used in this form for the closed system. For an open system, this right-hand submatrix will also contain in the first column elements denoted by $b_{i, 1}$, which are functions of the age--specific fertilities and survival probabilities (see Appendix II). These elements generate births.

Matrix S is useful in conjunction with matrix Q for estimating the fraction of people in each age bracket (i) who will ultimately die due to each group of causes of death (j). (These fractions are the elements of the matrix ($I-S)^{-1}$ Q.) See Figure 26 .

Table 1-B exhibits the components of the initial state vector 7%, ($\prod_{0}=D_{O A}, D_{O B}, \cdots, D_{O E}, W_{O 1}, W_{O 2}, \cdots, W_{O 18}$). In general, $D_{t j}$ is the cumulative number of deaths due to a given group of causes of death (j) at the $t^{\text {th }}$ stage.in time. Thus, we take $D_{O j}=0, j=A, B, \ldots$, E. Also, $W_{t i}$ is the number of women in a giver age bracket (i) at the $t^{\text {th }}$ stage in time, so that $W_{O i}, i=1,18$ gives the initial population of women.

A simulated experiment is then set up by specifying the SMRAG's, which determine the Q matrix and the S matrix, and the fertility functions $b_{j i}$, which include the SFRA's. The behavior of the population at a given stage (t) is determined in terms of the state vector

$$
\left(T_{t}=D_{t, A}, D_{t, B}, \ldots, D_{t 1}, w_{t 1}, w_{t 2}, \ldots, w_{t 18}\right)
$$

which is calculated recursively by multiplying the row vector \mathbb{T}_{t-1} of the previous stage by the matrix C. The number of deaths $\left(d_{t j}\right)$ due to a given cause (j) occurring during the time interval between $t-1$ and t is expressed as

$$
d_{t j}=D_{t, j}-D_{t-1, j}
$$

since $D_{t j}$ is the cumulative total of deaths due to cause j that took place at time t .

The rest of the vital statistics parameters of interest (fertility rates, mortality rates, erowth rates, percentage composition of deaths, etc.) are functions of the components of \prod_{t}, and their calculation is incorporated wi.thin the computer program.

The solution for \prod_{t} is symbolically stated as

$$
T T_{t}=T T_{t-1} C
$$

Alternately, because C is a constant matrix,

$$
\Pi_{t}=T_{0} c^{t}
$$

Thus, the entire behavior of the birth-life-death process depends only on the initial situation expressed by Π_{0} and the powers of matrix C.

The Second Model

Life expectancy, needless to say, is one of the important measures of human well-being. One of the fundamental goals set forth in the Charter of Punta del Este is to increase life expectancy at birth throughout Latin America by a minimum of five years within the first decade of the Alliance.

Life expectancy (e_{i}) represents the average remaining lifetime in years of a person who survives to the beginning of the $i^{\text {th }}$ age interval. A general expression for e_{i} is derived in Appendix III, where more detailed definitions are given.

Life expectancy at birth is c_{i} in the present notation, ard it is given by

$$
\begin{aligned}
& +P_{12} P_{2,3} \cdots \cdot \rho_{w 1, i}(1 / M \omega .)
\end{aligned}
$$

or, more completely,

$$
e_{1}=\sum_{i=1}^{\omega-1} n_{i} P_{i}^{*} \prod_{t=0}^{i-1} P_{r i+1}+\prod_{t=0}^{\omega-1} P_{r+1}(1 / M \omega .)
$$

where

$$
\begin{aligned}
n_{i} \quad= & \text { size of the } i^{t t_{t}} \text { age interval (all five years except } \\
& \text { the last), } \\
p_{i}^{*} \quad= & \left\langle p_{i, i+1}+a_{i} q_{i}, . \quad \begin{array}{l}
\text { which is a function of the transition } \\
\text { probabilities }
\end{array}\right.
\end{aligned}
$$

In Costa Rica (1963), 34 per cent of all female deaths corresponded to deaths from infectious and parasitic diseases among children under 5. A further examination of deaths due to Group A causes in the first age bracket shows that 78 per cent of the deaths are attributed to categories B36, B31, and B17 of the International Abridged List 1955 of the International Classification of Diseases. The breakdown is as follows:

DEATHS WITHIN THE FIRST AGE INTERVAL (UNDER 5 YEARS)
DUE TO CAUSES IN GROUP A

Subset of diseases
of Group A
B36 Gastroenteritis, duodenitis, enteritis, colitis (except diarrhea of newborn)

Pneumonia
All infectious and parasitic diseases not contained in other subgroups of Group A

B 11 , to $\mathrm{B} 16, \mathrm{~B} 30, \mathrm{~B} 32$

Percentage contribution to total deaths in Group A
45.8
19.4
13.3
21.5

100

It can be seen that a substantial reduction in specific mortalities within the first age interval from causes in categories B36, B31, and B17 would have a profound impact on the national health status of Costa Rica.

The next step, then, is to postulate a Level II of the SMRAG's that will involve altering these specific mortalities to a level corresponding more or less to that suggested by 1966 values in Puerto Rico for age interval 1. but somewhat higher. This is done by taking as the new rate for B36, 30 per cent of the old rate; as the new rate for $B 31,30$ per cent; and as the new rate for B17, 51 per cent. The impact of this reduction is to lower the specific mortality rate for Group A for females under 5 years of age from the baseline value of 1,450 per 100,000 female population to 695 per 100,000 . This is a. reduction of 52 per cent.
TRANSITION MATMIX FOR BASELINE DATA
(AN entries have been maltiplied by 1,000)

	Stage t : 1																						
	State \mathbf{A}	State B	State C	State D	State E	State 1	State 2	State 3	State 4	$\begin{gathered} \text { State } \\ 5 \\ \hline \end{gathered}$	State b	$\begin{gathered} 51 a t e \\ 7 \\ \hline \end{gathered}$	Stale B	$\begin{gathered} \text { State } \\ 9 \\ \hline \end{gathered}$	State 10	State 11	State 12	State 13	State 14	State 15	State 16	State 17	State 18
State A	1																						
State B		1																					
State C			1																				
State D				1																			
State E					1																		
State 1	14.190	4.457	0.095	0.135	2.570	0	978. 551																
State 2	2.531	0	0.217	0.180	1.591	0.887		995.479										-					
State 3	1.226	0	0.340	0.408	1.704	139.018			996.319														
State 4	0.933	0	0.254	0.593	3. 307	529.679				994.911													
State 5	0.716	0	0.238	1.194	5.256	811.426					992.594												
State 6	1.741	0	0.995	1.741	5.349	762.214						990.172											
State 7	1.255	0	2.651	1.395	6.140	603.191							988.557										
State 8	3. 128	0	3.128	2.606	6.429	383.312								984. 707									
State 9	2.684	0	6.935	4.027	8.501	142.110									977.851								
State 10	4.346	0	12.124	4.117	6.405	19.440										973.006							
State 11	3.766	0	14.751	9.415	10,357	0											961.708						
State 12	7.932	0	21.319	18.840	19.831	0												932.076					
5 tate 13	10.527	0	29.389	38.161	23.248	0													898.674				
State 14	16.410	0	52.514	50.052	45. 129	0														835.893			
State 15	30.832	0	54.363	88.441	50.306	0															776.055		
State 16	45.944	0	65.971	104.847	81.285	0																301.952	
State 17	126.669	0	68.401	260.938	131.736	0																	412.257
State 18	260.586	0	120.521	338.762	280.130	0	0	0	0	0	0	\checkmark	0	0	0	0	0	0	0	0	0	0	0

TABLE 3-B - inttial State vector

An experimental Level II of the SlFRA was elicited on the basis of figures from Chile for 1964. Chile was selected because it is a Latin American country which is not too dissimilar from Costa Rica in terms of ecological make-up but which, at the same time, has more idealized birth rates. It is rational to hypothesize that a similar birth structure would be feasible in Costa Rica. The 1963 baseline data for Costa Rica in terms of the transition matrix and the initial state vector are given in Table 3 (A and B).

The two levels of SFRA's are as follows:

*Corresponding to the Chilean SFRA values for 1964

Discussion: Kesults in the Transient Situation

A list of figures, defined by their abscissas (x-axes) and ordinates (y-axes), is given in Exhibit II for ready reference to the experimental results. Generally, a planner when he is designing an experiment will have in mind a number of effectiveness criteria that he wishes to meet by a given health services action. These criteria may not always be consistent: for example, there may be a desire to simultaneously lower a death rate and to reduce a growth rate. Usually the results of the experiment will be mainly quantitative, i.e. primarily useful in giving numerical. estimates of mortality and other demographic variables that otherwise might only be guessed at. Concomitantly, in some instances inferences of a qualitative type may be sought. Typical criteria might include the following:
(a) Diminution of the total death rate
(b) Diminution of the death rate due to one of the groups of causes
(c) Alteration of the age composition of deaths
(d) Increase of life expectancy
(e) Decrease of total population
(f) Increase of total population
(g) Alteration of the over-all age distribution

In Exhibit I some of the figures that would be useful in demonstrating the impact of the programs implied by our hypothetical experiment on each of the above criteria are given.

Exhibit I

Criterion	$\frac{\text { Figure }}{\text { (a) }}$
(b)	17
(c)	$18,19,20,21,22$
(d)	$2,14,15,16$
(e)	3
(f)	3
(g)	4,5

As an example of a logical inference-as opposed to a numerical quantification-that might be sought in running an experiment, the administrator of a program on cancer might take as his criterion the lowering of the death rate due to tumors in his country. He knows that there are four basic qualitative possibilities within his country for the future: agespecific mortality due to malignant tumors may remain more or less the same or it may go down, and specific fertility may remain the same or it may go down. Loosely speaking, this corresponds to a situation analogous to that in the experimental design:

Situation	Specific mortality (cancer)	SFRA
1	Same	Same
2	Same	Down
3	Down	Down
4	Down	Same

Since lower specific fertility would logically imply an ultimately older population, which in turn means a higher death rate due to turiors, and since lower specific mortality would imply a reduced death rate, he can logically infer the following steady state possibilities within his country:

Situation	Death rate (cancer)
2	Highest
1 and 3	Between 2 and 4
4	Lowest

What he cannot infer is whether or not the death rate for cancer will be higher in Situation 1 or in Situation 3. This logical question is answered, along with numerical specifications, if the appropriate simulations are made.

Because of limitations in time available to prepare this report, and also partly because of its expository nature, a thorough discussion of the insights that could be inferred through careful examination of each of the figures has not been included. It has been decided to only list typical outcome observations in Exhibit II, by way of indicating the kind of discussion that might be developed at greater length.

Figure	y-axis	x-axis	Experiments	Outcome
2	Life expectancy (years)	Age (years)	1,4	Experimental curve 4 shows 2.35 years' increase in life expectancy at birth over baseline.
3	Total population (100,000 s)	Time (5-year intervals)	All	Distance between curve 4 and curve 1 shows lives saved, etc.; baseline population doubles every 17 years, Situation 2 population doubles every 28 years.
4	Percentage of population under 5 years of age	${ }^{1}$	"	For baseline SFRA's percentage is virtually a constant; for reduced fertilities curve is unimodal.
5	Percentage of population over 65 years of age	'	11	
6	Total deaths (1,000 s)	"	"	The sum of the difference of total deaths between curve 1 and curve 4 during the time period will give the total number of potential. lives to be saved over that period by the appication of the program associated with Situation 4.
7	Deaths due to infectious and parasitic diseases	"	"	Cross-over point between curve 2 and curve 4 is explained by the behavior of fertility rates in that period (see Figure 23). Because deaths occur basically in the young age intervals, Situation 4 with lower group A death rates but higher birth rates ultimately yields a younger population which has more Group A deaths than is the case in Situation 2.
8	Deaths due to diseases of the early infancy (1,000 's)	"	"	

Figure	y-axis	x-axis	Experiments	Outcome
9	Deaths due to tumors (1,000's).	$\begin{gathered} \text { Time (5-year } \\ \text { intervals) } \end{gathered}$	All 1	
10	Deaths due to cardiovascular diseases (1, $000^{\prime} \mathrm{s}$)	11	11	
11	Deaths due to all other causes (1,000's)	11	11	-
12	Percentage of deaths due to infectious and parasitic diseases (1,000's)	11	11	-
13	Percentage of deaths due to diseases of early infancy	11	11	
14	Percentage of deaths due to tumors	11	11	The eventual impact of decreased fertility rates is to increase the percentage of deaths due to cancer because of an aging population.
15	Percentage of deaths due to cardiovascular diseases	11	*	
16	Percentage of deaths due to all other causes	11	11	.
17	Annual total mortality rate per 100,000	"	11	Experimental Situations 2 and 3 show an upward trend mainly due to increased cancer and cardicvascular death rates because of an increasingly aging population.
18	Anmual mortality rate per 100,000 due to infectious and parasitic diseases	11	11	

Figure

figure 2
ayerage mumber of years of future life in the female population of costa rica

FICURE 4
PROLECTIOMS DF PERCENTAGES OF FEmALE POPULATION UNDER 5 YEARS Of agE

figure 3
PROJECTIONS FOR THE qEMALE POPULATION OF COSTA RICA

figure 5
PRDIECTIONS OF PERCENTAGES OF FEMALE POPULATION OVER 65 YEARS OF AGE

figure 6
projections of the total number of deaths gy five-year periodo*

chemale population of costa rica

FIGURE a

Projections of the number of oeaths caused by diseases of early infancy by five-year periods*

[^1]floure 7
projections of the number of deaths caused by infectious and Parasitic diseases by five-year periods*

-female population of costa rica
figure 9

PROJECTIONS OF THE NUMBER DF DEATHS CAUSED by tumors by five-year perioos *

FIGURE 10

Projections of the number of deaths caused by cardiovascular olseases by five-year periods*

-female population of costa rica
e of total deaths caused by infectious and parasitic diseases by five.year periods*
n
\cdots
\cdots
\cdots
\cdots

[^2].............. EXPERIMENT III - - - - EXPERBENT II
figure 11
projections of the number of deaths caused by all other dISEASES by five.year periods *

-female popliation of costa rica

FIGURE 13
PROJECTIONS OF THE PERCENTAGE OF TOTAL DEATHS CAUSED BY DISEASES of early infancy by five-year periods *

Figure 14
profections of the percentage of total deaths caused by tumors by five-year periods *

-female popiliation of costa rica

figure 16

projections of the percentage of total deaths caused by all other diseases by five-year perions *

-female population of costa rica

Figure is
PRDJECTIONS of the percentage of total deaths caused by cardiovascular diseases by five-year peridos*

afemale popilation of costa rica

FIGURE 17
projections of the total annual average mortality rates by five-year periods*

-——EXPERIMENT I - - EXPERIMERT II
.............. Explhment iII - - - experment II
*Femalg population of costa rica
figure ia
ProIections of average annual mortality caused by imfections and parasitic diseases by five-year periods *

- female population of costa mica

PROJECTIONS Of ayerage annual mortality caused by tumors by five-year peridos *

FIGURE 19
projections of average annual mortality caused by diseases of early imfancy by five-year perions *

-female population of costa rica

FIGURE 21
PRDJECTIDNS OF average annual mortality caused by cardiovascular diseases by fiye-year periods *

- ERPERIMENT I - - EXPERIMENT II
............... EXPERIMENT II - - EXPERIMENT [V
projections of average annual fertility rates by five-year periods*

FIGURE 22
PRDJECTIONS OF aVERAGE anNUAL mORTALITY CAUSED BY ALL ofher diseases by five-year periods *

projections of hyerage annual growth rates by five-year periods*

figure 25

PROBABILITIES AT A GIVEN AGE OF DYING FROM A SPECIFIC GROUP OF DISEASES*

FIGURE 26
probabilities, by age, of eventual death from specific groups of causes*

[^3]The steady state situation has been defined to exist from that point of time at which the percentage distribution of the population has become virtuaily constant.

Tables 4 and 5 contain the steady state percentage composition of death and of the death rate per 100,000 by groups of causes of death, respectively, for the four experimental situations in steady state. Thus, the longrange criteria outcomes for the percentage composition of death and of the death rate may ve compared for the four hypothetical program options associated with the iour experiments.

Iable 4, for example, shows that the baseline (Experiment 1) percentage of all deaths due to infectious and parasitic diseases is 48.3; however, if the outlined alteration of the specific mortality in the first age group were to be made with no change in SFRA's (Experiment 4), the new percentage of all deaths due to infectious and parasitic diseases could be 34.5. Thus, the corresponding program change would effect a decrease of 13.8 in the percentage of deaths due to these causes. (On the other hand, the percentage of deaths due to other causes would go up, of course, since the total percentage is always 100.)

If the SMRAG's are all fixed but the SFRA's vary, it is seen that the redistribution of the population by age ultimately (in steady state) causes the percentage of deaths due to cancer to rise from 8.5 to 16.1 per cent because of the older population resulting from decreased SFRA's.

Turning to 'Iable 5, again examinine the case of fixed SFRA's and reduced vexsus baseline SMRAG's (Experiment 4 outcome versus Experiment I outcome), it is seen that the input change within age interval 1 of 1,450 deaths per 100,000 population due to diseases in Group A to 695 deaths per 100,000 due to these same causes has effected, in steady state, a specific mortality rate reduction for Group A diseases from 373.1 per 100,000 to 206.7 per 100,000 and, concomitantly, has caused slightiy decreased specific mortality rates within the other disease groups as well (except Group B, or diseases of early infancy). The impact on the total mortality rate has been a decrease of 172.3 per 100,000.

On the other hand, if the SMRAG's are constant but the SFRA's are changed, it is seen that ultimately the decrease in specific fertility results in a death rate decrease of 71.4 per 100,000 in Group A and 40.6 per 100,000 in Group B, but an increase in death rate of 88.1 for Group C, 131.2 for Group D, and 74.7 for Group E. Obviously, infectious and parasitic diseases and illnesses of early infancy will not take the same toll in an older population; the other classes --tumors, cardiovascular diseases, and other causes-- will be more prevalent.

Table 6 gives the steady state total death rates, total fertility rates, and growth for the four experimental situations.

səseəsța よo dnoxp Kq पłead よo
Experimental Design Outcome: A Steady State Percentage Distribution

[^4]Table 6-A
Experimental Design Steady State Total Death Rate Outcome

S
M
R
A
G

I	I. SFRA--baseline	II. SFRA-reduced	Difference
	7.72	9.54	+1.82
Difference	6.00	8.25	+2.25

Table 6-B
Experimental Design Steady State Total Fertility Rate Outcome

Table 6-C
Experimental Design Steady State Growth Rate Outcome

Conclusion

A Markovian model of the birth-life-death process has been developed that relates the input decision variables of specific mortality rates by age and group of diseases (SMRAG's) and specific fertility rates by age (SFRA's) to output criteria involving life expectancy, the time-dependent structure of mortality by age and cause of death, and other time-dependent demographic structures.

The concept of experimentation in the form of computer simulation to determine the impact of health services prograns has been introduced. If one knows the cost of a program, and its likely alteration of the SMRAG's and SFRA's, the simulation will determine effectiveness as measured in terms of the output criteria.

The distinction between transient and steady state solution (and situations) has been made. The immediate effects of the application of a program are demonstrable through examination of the transient values of the criteria. Long-range comparisons among programs may be made by examining the steady state values of the output criteria effected by the various programs.

The present methodology may be used in the following ways:

- To make a dynamic analysis of mortality structures by age intervals and disease groupings under various hypothesis of SMRAG's and SFRA's;
- To simulate the behavior of population structures and other vital criteria under various experimental (program) conditions;
- As a simple computational tool, to estimate the gain in life expectancy effected by different programs of specific mortality reductions;
- In conjunction with available computer programs at the Johns Hopkins University, to estimate the manpower and general resource requirements necessitated by various programs;
- To serve as an educational tool for students in Public Health Services.

There are two analytic innovations in the development of this model that make it mathematically suited for the range of studies mentioned in the above list: (1) the ability to calculate the required transition probabilities in the Markov matrix C in terms of SMRAG's and SFRA's through formulas adapted from demographic articles and writings ($1, \underline{6}, 8$); and (2) the use of the "absorbing barriers" representation of Markov chains so that deaths due to an arbitrary number of causes (in this case the five groups of diseases) may be tabulated explicitly, and thus the effects of all the SMRAG's and SFRA's on any defined disease population (i.e., cause of death grouping) are determined.

APPENDIX I

ESTIMATION OF THE ABSORBING AND SURVIVAL PROBABILITIES

Definitions

$M_{i j} \quad=$ Annual specific mortality rate by age interval $i(i=1,2, \ldots, 18)$ and by group of causes of death $j(j=A, B, C, \ldots, E)$
$M_{i} . \quad=\sum_{j} M_{i j}$ (Annual specific mortality by age interval)
$n_{i} \quad=$ Size of age interval i, in this case, $n_{i}=n$ for $i=1,2, \ldots, 17$
$A_{i} \quad=\sum_{j=1}^{i-1} n_{j}$ (Size of the first i-l age intervals)
$r_{i} q_{i, j}=$ Probability that an individual of exact age A_{i} at the beginning of the age interval i will dic before reaching the end of that interval by any of the diseases of Group j
$n^{q_{i}, .}=\sum_{j} n_{i, j}$
$P_{i, i+1}=\left(1-\quad q_{i, .}\right)=\left(\right.$ Probability of an individual of exact age A_{i} at the beginning of the $i^{\text {th }}$ age interval surviving to the end of that interval and entering the next age interval $i+1$)
$S_{i, i} I=$ Probability of an individual whose age is contained in the age interval i surviving to the end of that interval and entering the next age interval i 1
$n^{q^{*}}{ }_{i}, .=\left(I-S_{i, i}\right)=($ Probability of an individual whose age is contained in the age interval i dying before reaching the end of that interval)
$n^{q^{*}}{ }_{i, j}=$ Probability of an individual whose age is contained in the age interval i dying before reaching the end of that interval by any of the diseases of Group j

Definitions (Cont'd)
$n_{i} a_{i}=$ Average number of years lived in the $i^{\text {th }}$ interval by an individual who dies within it
$n^{L} i=$ The expression from the life table that means the number of person-years lived during the age interval i by the cohort of births assumed. ($i=1,2, \ldots$, w)
$l_{i} \quad=$ Number of persons living at the beginning of the age interval i, out of a total cohort (l_{1}) of births that is assumed

An estimate of $n_{i}{ }_{i}$, and $n_{i, j}$ can be made by the following function given by Chiang (ㄹ) :

$$
\begin{array}{ll}
n^{q_{i}, .}=\frac{n_{i} M_{i}}{I+\left(I-a_{i}\right) n_{i} M_{i}} & i=(1,2, \ldots, 17) \\
& \\
n^{q_{i}, j}=\frac{n_{i} M_{i}, j}{1+\left(1-a_{i}\right) n_{i} M_{i}} & i=(1,2, \ldots, 17) \\
& j=(A, B, C, D, E)
\end{array}
$$

where the value of a_{i} estimated from the expression

$$
\begin{aligned}
& a_{i}=\frac{n_{i}^{L_{i}}-n_{i} l_{i+1}}{n_{i} d_{i}} \\
& d_{i}=1_{i}-1_{i+1}
\end{aligned}
$$

so that the above probabilities of dying are referred to individuals of exact age A_{i} at the beginning of the age interval that will be used in the
estimation of life expectancy. For the purpose of simulating experiments by the Markov model, however, what is needed are the probabilities of dying for individuals of ages contained in the interval. This can be obtained by applying the following expression:

$$
S_{i, i+1}=\frac{n_{i+1}^{L_{i}}}{n_{i}^{L}} \quad i=(I, 2, \ldots, 17)
$$

which, in probabilistic terms for the use of the present model, can be writer as

$$
\begin{array}{ll}
S_{i, i+1}=P_{i, i+1} \frac{\left(P_{i+1, i+2}+a_{i+1} q_{i+1}\right)}{\left(P_{i, i+1}+a_{i} q_{i,}\right)} & i=(1,2, \ldots, 16) \\
S_{i, i+1}=\frac{P_{i, i+1}\left(n_{i+1} a_{i+1}\right)}{n_{i}\left(P_{i, i+1}+a_{i} q_{i, l}\right)} & i=17 \\
& \\
S_{i, i+1}=0 & i=18
\end{array}
$$

The estimate of $\mathrm{n}^{q_{i}^{*}}$, is given by

$$
n^{q_{i}^{*}}, .=\left(1-S_{i, i+1}\right) \quad i=(1,2, \ldots .18)
$$

and the estimation of its components by

$$
n_{i, j}^{q_{i}^{*}}=n^{q^{*}}{ }_{i} \cdot\left(\frac{q_{j, j}}{\sum_{j}^{q_{i j}}}\right)
$$

APPENDIX II

ESTIMATION OF THE NUMBER OF BIRTHS

Definitions
$W_{i, t}=$ Female population in the age interval i at time t
$F_{i} \quad=$ Annual specific fertility rate for age interval $i\left(F_{i} \neq 0, i=3,9\right)$
$\mathrm{f}=$ Female fraction of the newborn
$u \quad=$ Real time measured from zero at the start of a simulation
$\mathrm{n}=$ Time interval (5 years in the present case)
$U_{t}=$ Value of u at the beginning of the $t^{\text {th }}$ time period $\left(U_{t}=(t-1) n\right)$
$5^{L_{0}}$ and ℓ_{1} are defined in Appendix I

The total number of newborns in the period $u_{t+1}-u_{t}=5$ is given by

$$
\sum_{i=3}^{10} \frac{\left(W_{i, t}+S_{i-1, t} W_{i-1, t}\right)}{2} \quad 5 F_{i}
$$

and since the probability of a newborn surviving his age interval is $\frac{5^{L}}{5 l}$ and the female fraction of the newborn is f, then the total number of newborns that will survive the period is

$$
\sum_{i=3}^{10}\left(\frac{w_{i, t}+w_{(i-1), t} S_{i-1, i}}{2}\right) F_{i} \frac{5 \frac{5^{I}}{5 I}}{}{ }^{t}
$$

which can be written as

$$
\sum_{i=2}^{10} W_{i, t}\left(F_{i}+S_{i, i+1} F_{i+1}\right)\left(\frac{5}{2} \quad P_{i}^{*} f\right) \quad i=2,3, \ldots, 10
$$

noting that

$$
\begin{aligned}
F_{i} & =0 \text { for } i=2 \\
F_{i+1} & =0 \text { for } i=10
\end{aligned}
$$

where

$$
P_{1}^{*}=\left(p_{1,2}+{ }^{q_{1}}, . a_{1}\right)
$$

and

$$
s_{i, i+1}=p_{i, i+1}\left(\frac{p_{i+1, i+2}+a_{i+1} q_{i+1}}{p_{i, i+1}+a_{i}} q_{i,}\right)
$$

The term $b_{i 1}=\frac{5}{2} \quad P_{1}^{*}\left(P_{i}+S_{i, i+1} F_{i+1}\right)$ for $i=3,4, \ldots, 10$, is the one that appears in the $i^{\text {th }}$ row of the column of $b^{\prime} s$ in the transition matrix given in table l-A.

APPENDIX III

ESTIMATION OF LIFE EXPECTANCY

The life expectancy ℓ_{i} of a person exactly A_{i} years old is classically estimated through the use of life table functions, expressed by the formula

$$
e_{i}=\frac{T_{i}}{\ell_{i}}
$$

l_{1} is the number of people in a hypothetical cohort. (Usually $l_{1}=$ 100,000.)
l_{i} is the expected number of people within the cohort who will live to be A_{i} years or older.
T_{i} is the expected total number of years lived from age A_{i} on, by t he ℓ_{i} people.

A general expression for e_{i} is:

$$
\begin{aligned}
& e_{1}=\sum_{k=i}^{\omega-1} M_{k} p_{k}^{*} \prod_{r=0}^{k-1} p_{r++1}+\prod_{r=0}^{\omega-1} \mathcal{P}_{r+r+1} / M_{\omega} . \quad, i=1,2, \ldots, \omega-1 \\
& e_{i}=1 / M_{\omega} . \quad, i=w
\end{aligned}
$$

where

$$
\begin{aligned}
& P_{i}^{*}=p_{i, i+1}+\dot{a}_{i} q_{i,} \\
& n_{i}=\text { Size of the } i^{\text {th }} \text { age interval }
\end{aligned}
$$

$$
\begin{aligned}
& P_{i, i+1}=\text { Estimated probability of a person surviving to age } \\
& A_{i}+n_{i} \text { (given, of course, that he has survived to his } A_{i} \text { th } \\
& \text { birthday) } \\
& A_{i}=\sum_{j=0}^{i-1} n_{j} \\
& q_{i, .}=\left(1-P_{i, i+1}\right), \quad i=1, \quad w-1
\end{aligned}
$$

$a_{i}=$ The average fraction of the amount of years lived by those who reach age A_{i} but die before age $A_{i}+n_{i}$
$M_{W}=$ The crude mortality rate in the last age interval

Note that

$$
P_{i, i+1}=1-\sum_{j=A}^{E} q_{i, j}
$$

where

$$
\begin{aligned}
q_{i, j} & = \\
& \text { The probability of a person in age bracket } i \text { dying of } \\
&
\end{aligned}
$$

and the values for q_{i}, j have been estimated by expression given by Chiang

$$
q_{i, j}=\frac{M_{i, j} n_{i}}{1+\left(1-a_{i}\right) n_{i} M_{i} .} \quad \begin{aligned}
& j=A, E \\
& i=1, w-1
\end{aligned}
$$

where

$M_{i, j} \quad=$ specific mortality rate due to group j in age bracket i

1. Chiang, C.I. A stochastic study of the life table and its applications. I. Probability distribution of the biometric functions. Biometrics 16: 618-635, 1960.
2. Chiang, C.I. A stochastic study of the life table and its applications. II. Sample variance of the observed expectation of life and other biometric functions. Hum Biol 32:221-238, 1960.
3. Costa Rica, Dirección General de Estadistica y Censos. Censo de población, 1963. San José, 1964.
4. Feller, W. An Introduction to Probability Theory and Its Applications. 2d ed. New York, Wiley, 1957, Chapters 15 and 16.
5. Goodman, L. A. An lementary approach to the population projection matrix and to the mathematical theory of population growth. Demography 5:382-409, 1968.
6. Kemeny, J. G., and J. I. Snell. Finite Markov Chains. New York, Van Nostrand, 1960.
7. Keyfitz, N. The population projection as a matrix operator. Demography 56-73, 1964.
8. Keyfitz, N. Introduction to the Mathematics of Population. Reading (Mass.), Addison Wesiey, 1968.
9. Keyfitz, N. and W. Fleeger. World Population and Analysis of Vital Data. Chicago, University of Chicago Press, 2968.
10. Leslie, P. H. On the use of matrices in certain population mathematics. Biometrika 33:183-212, 1945.
11. Romero, M., M. Gómez, J. Alfaro, and J. Ruíz. Tablas de vida de Costa Rica, 1962-1964. San José, Instituto Centroamericano de Estadística, 1967. (Serie Económica y Estadif́stica No. 24)
12. United Nations. World Health Statistics Annual, 1963. Vol 1. New York, 1964, pp. 44-47.
13. United Nations. World Health Statistics Annual, 1966. Vol 1. New York, 1967.

[^0]: * Paper prepared for the Ninth Meeting of the PAHO Advisory Committe on Medical Research by Jorge Ortiz, PAFO Department of Research Development and Coordination, and Rodger D. Parker, Johs Hopkins University School of Hygiene and Public Health.

[^1]: *female population of costa rica

[^2]: ———EXPERIMENT I - E- EXPERIMENT ■

[^3]: Discussion: Resulto in the Steady State

[^4]:

