HETEROGENEIDAD ENTRE TRES CEPAS DEL VIRUS DE LA FIEBRE AFTOSA, SUBTIPO A_m CRUZEIRO USADAS PARA LA PRODUCCIÓN DE VACUNAS

J. J. TRINIDAD1, V. MALIRAT2, I. E. BERGMANN2

1Facultad de Ciencias Veterinarias, Universidad de Buenos Aires
Avda. Chorroarín 280, Buenos Aires 1427, Argentina
2Centro Panamericano de Fiebre Aftosa (OPS/OMS)
Caixa Postal 589, 20001-970 Rio de Janeiro, RJ, Brasil

Resumen. Tres cepas del virus de la fiebre aftosa (FA), subtipo A_m Cruzeiro, usadas para la producción de vacunas, se compararon entre sí por mapeamiento T, (fingerprinting) y por electroforesis en geles de poliacrilamida de las proteínas de la cápside. A pesar de resultar indistinguibles por ensayos de fijación de complemento, el mapeamiento T, mostró variaciones genómicas entre ellas, que alcanzaron valores de hasta 4.0%. Estas diferencias se reflejaron en la movilidad electroforética de la principal proteína inmunogénica VP₇. En una de las cepas, los patrones de migración de las proteínas estructurales VP₃ y VP₇ también fueron afectados. Los resultados ilustran la diversidad genómica potencial entre cepas usadas para la producción de vacunas contra la FA.

El control de la fiebre aftosa (FA) en regiones endémicas se basa, en parte, en la inmunización sistemática con vacunas inactivadas químicamente. A pesar de ser efectivas, su producción y uso se ven afectados por la extensa diversidad antigénica del virus. Existen 7 tipos serológicamente distinguibles, distribuidos en forma no uniforme en el mundo (21). En la mayoría de las regiones, vacunas para dos o más serotipos son usadas de rutina en la profilaxis.

Cada serotipo comprende un número siempre creciente de subtipos, los que surgen con mayor frecuencia dentro del grupo A (20, 23). No todas las variantes dentro de un subtipo proporcionan protección cruzada. Contrariamente, vacunas derivadas de ciertas cepas pueden proteger contra virus pertenecientes a más de un subtipo (11, 19). Esto ilustra la necesidad de seleccionar cepas vacunales que sean capaces de neutralizar efectivamente un rango de muestras de campo tan amplio como sea posible. De hecho, generalmente se acepta que nuevas variantes antigénicas que surgen en el campo pueden controlarse usando vacunas que inducen anticuerpos con amplio rango de reactividad.

Una vez que la variante de la cepa vacunal adecuada ha sido seleccionada, la preocupación mayor es asegurar su estabilidad durante la producción de la vacuna. Este proceso generalmente involucra múltiples ciclos de crecimiento en cultivos celulares. Sin embargo, durante el pasaje del virus en líneas celulares se ha demostrado variación potencial del VFA. Así, diversos autores (5, 10, 15), observaron variantes de placa asociadas con cambios antigénicos luego de pasajes en células de riñón de criad de hamster (BHK), mientras que Sobrino y cols. (25), describieron el surgimiento de variantes genómicas.

Debido a que la diversidad es en sí misma el resultado de la variación genética (revisión en Domingo y cols. 8), la aplicación de métodos moleculares constituye una valiosa herramienta...
para estudios de variabilidad, ya que éstos son capaces de identificar mutaciones genómicas que pueden llevar a cambios antiógenicos.

Para obtener información preliminar acerca del impacto que la diversidad del VFA tiene en cepas vacunales individuales, fueron analizados los mapas T₁ del ARN genómico, y la movilidad electroforética en geles de poliacrilamida (PAGE) de las proteínas estructurales, de tres cepas vacunales subtipo A₂₄ Cruzero. Como muestran los resultados, ha sido posible establecer diferencias genéticas sustanciales entre dos de las cepas estudiadas.

MATERIALES Y MÉTODOS

Células y virus

Aislamiento del ARN y mapeamiento T₁

El marcado radioactivo del ARN del VFA con ³²P y la extracción del ARN citoplasmático fueron llevados a cabo como fuera descrito anteriormente (1). El método usado para la separación de los oligonucleótidos resistentes a T₁ fue una modificación de técnicas anteriores y se realizó como fuera descrito (2).

Electroforesis en geles de poliacrilamida de las proteínas estructurales de los virus

Las proteínas estructurales fueron preparadas para cada cepa, mediante infección de monocapas de células BHK-21 a una multiplicidad de infección de 10 UFP/célula. Luego de registrado efecto citopático completo, el medio, congelado y clarificado, fue agitado con triclorotrifluoreyano al 10% y centrifugado a 10,000 x g durante 15 min a 4°C, y el sobrenadante ajustado a una concentración final de tampón NET (10 mM Tris-HCl, pH 7.5, 100 mM NaCl, 1 mM EDTA).

Los virus se concentraron por centrifugación a través de un colchón de sacarosa al 20% en tampón NET, a 95.000 x g, 3 h a 4°C. El pellet fue resuspendido en el mismo tampón, y seguidamente purificado por sedimentación en gradiente de sacarosa, de acuerdo con Denoya y cols. (6).

Los viriones (2 μg) fueron desintegrandos por tratamiento a 90°C durante 2 min en un tampón conteniendo 80 mM Tris-HCl, pH 6.8, 10% dodecil sulfato de sodio (SDS), 8% urea, 1,2 M 2-mercaptoetanol, 20% glicerol y 0.02% de azul de bromofenol. Las proteínas fueron resueltas por electroforesis en SDS-12,5% PAGE, (14) conteniendo urea 8M (SDS-urea-PAGE).

RESULTADOS

Fingerprinting T₁ de los ARNs de las cepas vacunales A₂₄

La Figura 1A muestra los mapas T₁ de los ARNs de las cepas vacunales A₂₄ 1/55 y A₂₄ 2/55.

Una representación esquemática de las diferencias entre las dos cepas se resume en la Fig. 1B. Los oligonucleótidos adicionales y faltantes se catalogaron y los resultados se presentan en la parte C de la figura. En forma similar, se presentan las comparaciones entre las cepas A₂₄ 1/55 y A₂₄ 3/55, así como entre las cepas A₂₄ 2/55 y A₂₄ 3/55 en las Figs. 2 y 3, respectivamente.

A pesar de que los tres virus son indistinguibles por ensayos de fijación de complemento, cada ARN posee oligonucleótidos únicos, y el número de cambios totales de oligonucleótidos estimado como fuera descrito por Nakajima y col. (10) varió entre 2.5 (entre las cepas A₂₄ 1/55 y A₂₄ 3/55) y 32.5 (entre las cepas A₂₄ 2/55 y A₂₄ 3/55). Estas diferencias representan variaciones en 0.3-4.0% de nucleótidos en el genoma (Cuadro 1).
FIGURA 1. Comparación de los *fingerprints* de los oligonucleótidos resistentes a Tₐ de los ARN's de los VFA A₀, 1/55 y A₀, 2/55.
A. Autoradiografía de los oligonucleótidos marcados con ³²P y resistentes a ribonucleasa T₁ de los ARN's indicados.
B. Análisis comparativo de los *fingerprints* de los virus indicados en la figura. La identidad de manchas (oligonucleótidos) en las diferentes muestras fue confirmada, cuando fue preciso, por medio de co-electroforesis de mezclas conteniendo cantidades equivalentes de digestos de ARNasa T₁. La línea negra marca un límite arbitrario entre los oligonucleótidos pequeños y los grandes, éstos últimos (48 en la cepa A₀, 1/55) usados en las comparaciones. Códigos para el análisis comparativo: los círculos negros numerados corresponden a oligonucleótidos presentes en ambas cepas. Los números circulados en fondo blanco y los números no circulados representan oligonucleótidos presentes solamente en la cepa A₀, 1/55 o A₀, 2/55, respectivamente.
C. Catálogo de oligonucleótidos adicionales y faltantes de la cepa A₀, 2/55 con respecto a la A₀, 1/55. Solo se incluyen aquellos en los que se observaron diferencias.
FIGURA 2. Comparación de los *fingerprints* de los oligonucleótidos resistentes a T₁ de los ARN de las cepas de VFA A₂₄ 1/55 y A₃ 3/55. Las especificaciones son como en la Fig. 1.

A. Autoradiografía de los oligonucleótidos marcados con 32P y resistentes a ribonucleasa T₁ de los ARNs indicados.

B. Los números circulados en fondo blanco indican a oligonucleótidos presentes solamente en la cepa A₃ 3/55; los números sin circular denotan oligonucleótidos pertenecientes solamente a la cepa A₂₄ 1/55.

C. Catálogo de oligonucleótidos adicionales y faltantes de la cepa A₃ 3/55 con respecto a la cepa A₂₄ 1/55.

Trinidad et al.
En los virus A\textsubscript{24} 1/55 y A\textsubscript{24} 3/55, los polipéptidos estructurales VP\textsubscript{1} (1B) y VP\textsubscript{3} (1C) mostraron patrones de migración indistinguibles. Sin embargo, se observó una movilidad electroforética aumentada de estas proteínas, cuando las cepas mencionadas se compararon con la A\textsubscript{24} 2/55.

DISCUSION

Los resultados presentados en este trabajo proporcionan evidencia de la heterogeneidad entre cepas del VFA subtipo A\textsubscript{24} usadas en la producción de vacunas. Esta variación genética afectó a la proteína inmunogénica VP\textsubscript{1}, como muestran los resultados de SDS-urea-PAGE (Fig. 4), y de secuenciamento de nucleótidos (manuscrito en preparación).

A pesar de que no se dispone de información detallada acerca de los pasajes en cultivo de células a que fueron sometidas estas cepas vacunales, los cambios observados pueden ser atribuidos a sus diferentes historias de crecimiento.

De hecho, se ha demostrado el surgimiento de variantes genéticas con propiedades antigénicas y/o inmunogénicas alteradas durante la replicación del VFA en cultivos celulares (12, 13, 24, 25) inclusive luego de una extensa purificación por plaquero (27), o en ausencia de anticuerpos específicos contra el virus (7).

Asimismo, se ha descrito variación genética como el resultado de la adaptación del VFA a diferentes sistemas celulares susceptibles. Rowlands y cols. (22) informaron que un número de variantes de la región de VP, reconocida como inmunogénica, eran seleccionadas luego de un único pasaje en células BHK de una cepa de VFA, subtipo A\textsubscript{24}, derivada de bovino. También se describieron (26) variaciones en esta región, entre distintos clones de cADN de los subtipos A\textsubscript{1} y A\textsubscript{24}. Bolwell y cols. (4) mostraron la selección de una variante antigénica del VFA, A\textsubscript{24} Iraq 24/64, que contiene tres diferencias de codificación de la proteína de la cápside VP\textsubscript{2}, luego de la adaptación del virus de cultivo celular en monocapa a suspensión. La cepa adaptada a monocapa inducía anticuerpos que neutralizaban efectivamente un rango más amplio de variantes de campo, que la adaptada a suspensión.

<table>
<thead>
<tr>
<th>CUADRO I. Comparaciones apareadas entre las tres cepas.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A\textsubscript{24} 1/55</td>
</tr>
<tr>
<td>31,5</td>
</tr>
<tr>
<td>3,8</td>
</tr>
<tr>
<td>0,3</td>
</tr>
</tbody>
</table>

Nota: Cambios totales de oligonucleótidos (arriba a derecha) estimados como fuera descrito por Nakajima y cols. (16), y porcentaje de variación calculado suponiendo que se analiza el 10% del genoma, y que los oligonucleótidos grandes son representativos del genoma completo (abajo a izquierda).

Consecuentemente, y concordando con los resultados presentados en este trabajo, las cepas vacunales pueden mostrar diferencias entre lotes, de acuerdo a su historia de pasajes. La heterogeneidad entre preparaciones virales usadas para la producción de vacunas en España también ha sido informada (9).

Resultados previos de Cowan y cols. (5) sugirieron que la fijación de cambios antigénicos relevantes puede impedir la inmunogenicidad esperada de las vacunas. Estos autores asociaron los cambios antigénicos ocurridos al cultivar VFA en células BHK, con una disminuida habilidad para inmunizar contra el virus parental. En contraposición, Parry y cols. (17), no encontraron correlación entre variantes antigénicas y aparente desempeño en pruebas de potencia, de 18 cepas vacunales adaptadas a células BHK en suspensión. Se están continuando los estudios para establecer si las modificaciones observadas en las tres cepas vacunales analizadas en este trabajo, afectaron su inmunogenicidad.

A pesar de que la heterogeneidad inherente a las poblaciones de VFA, el surgimiento de nuevas variantes antigénicas durante la producción de vacunas podría minimizarse reduciendo el número de ciclos de crecimiento viral, en un sistema seed lot. Sin embargo, en el caso del procedimiento de Frenkel, esto no es practicable y se ha registrado variación luego de los continuos pasajes que son inherentes al sistema (18).

FIGURA 3. Comparación de los fingerprints de los oligonucleótidos resistentes a T₁ de los ARNs de las cepas de VFA A₂ 2/55 y A₃ 3/55. Las especificaciones son como en la Fig. 1.
A. Autoradiografía de los oligonucleótidos marcados con ³²P y resistentes a ribonucleasa T₁ de los ARNs indicados.
B. Los números circulados en fondo blanco indican a oligonucleótidos presentes solamente en la cepa A₃ 3/55; los números sin circular denotan oligonucleótidos pertenecientes solamente a la cepa A₂ 2/55.
C. Catálogo de oligonucleótidos adicionales y faltantes de la cepa A₂ 2/55 con respecto a la cepa A₃ 3/55.

Trinidad et al.
Debe notarse que, aunque ni los mapas T, ni el análisis por SDS-urea-PAGE pueden correlacionarse con inmunogenicidad y/o protección in vivo, resultaron herramientas útiles para un control preliminar de la estabilidad de la cepa vacunal. Adicionalmente, la caracterización molecular permite una precisa correlación entre cepas vacunales y los virus que surgen en el campo (3).

Desde un punto de vista práctico, estos estudios enfatizan la necesidad de controlar los stocks de virus usados para la producción (y el desafío) de las vacunas. Esto es particularmente importante en vista de la nueva tendencia de seleccionar cepas vacunales de amplio espectro (incluso para serotipos altamente látiles como el A), para su uso en regiones geográficas extensas, como Sudamérica.

RECONOCIMIENTOS

Los autores desean agradecer a Pedro Jeovah Vieira Pereira y María Aparecida Afonso Boller por la excelente asistencia técnica.

El autor principal presentó este trabajo en cumplimiento parcial de los requisitos para el título de *Magister* en Salud Animal de la Universidad de Buenos Aires.

REFERENCIAS

