Segurança de veículos motorizados de duas e três rodas

UM MANUAL DE SEGURANÇA PARA GESTORES E PROFISSIONAIS DA ÁREA
Segurança de veículos motorizados de duas e três rodas

Um manual de segurança para gestores e profissionais da área
Índice

Prefácio ... v
Contribuições e agradecimentos vi
Resumo executivo .. vii

Introdução .. 1

Implementação de boas práticas de segurança viária 3
Por que foi elaborado este manual? 3
Contexto ... 4
A quem se destina este manual? 5
Que temas são abrangidos pelo manual? 5
Como utilizar este manual? 6
Quais são as limitações deste manual? 6
Como foi elaborado este manual? 7
Difusão do manual .. 7
Como obter cópias impressas 7
Referências ... 8

1 Por que é necessário abordar a segurança dos PTWs? 9

1.1 O que são PTWs? ... 11

1.2 A importância dos PTWs para a mobilidade 11
1.2.1 Como são usados os PTWs? 14
1.2.2 Distribuição global dos PTWs 14
1.2.3 Fatores contribuintes para a expansão da frota de PTWs 17

1.3 O problema das lesões relacionadas com PTWs 18
1.3.1 Lesões e mortes relacionadas com PTWs 18
1.3.2 Características demográficas de usuários de PTWs mortos ou traumatizados em incidentes no trânsito 20
1.3.3 Onde ocorrem os incidentes com PTWs? 21
1.3.4 Quando ocorrem as mortes relacionadas com PTWs? 22
1.3.5 Custos das lesões associadas ao uso de PTWs 22

1.4 Fatores de risco para lesões relacionadas com PTWs 22
1.4.1 Fatores de risco relacionados com os usuários 22
1.4.2 Fatores de risco relacionados com o ambiente viário 26
1.4.3 Fatores de risco relacionados com os veículos 27
1.4.4 Outros fatores de risco 28

1.5 A abordagem Safe System e a segurança de PTWs 28

Resumo ... 30
Referências .. 31
Índice

2 Realização de uma avaliação situacional

2.1 O que é uma avaliação situacional? 39
2.2 Por que é necessária uma avaliação situacional? 40
2.3 O que é avaliado e quais são os componentes de uma avaliação situacional? 41
 2.3.1 Avaliação da carga dos lesões e mortes relacionados com PTWs 41
 2.3.2 Avaliação das políticas, leis e regulamentações existentes para PTWs 42
 2.3.3 Avaliação das intervenções e programas existentes para PTWs 45
 2.3.4 Avaliação dos grupos de interesse e do público-alvo .. 45
2.4 Uso de resultados da avaliação situacional para ações direcionadas 47

3 Intervenções para abordar a segurança dos veículos motorizados de duas ou três rodas

3.1 Intervenções específicas para melhorar a segurança dos PTWs 52
 3.1.1 Intervenções eficazes e promissoras ... 54
 Sistema de freio ABS – como funciona ... 57
 3.1.2 Intervenções para a segurança dos PTWs com evidências insuficientes ou fracas .. 68
3.2 Intervenções gerais de segurança viária que podem melhorar a segurança dos PTWs 69
 3.2.1 Intervenções relacionadas com vias mais seguras 69
 3.2.2 Intervenções relacionadas com usuários mais seguros 70
 3.2.3 Melhoria da atenção após a ocorrência de incidentes 72

4 Implementação e avaliação de intervenções de segurança para PTWs

4.1 Definição dos resultados desejados 85
4.2 Priorizar as intervenções baseadas em evidências científicas .. 86
4.3 Elaboração de um plano de avaliação e monitoramento ... 88
 4.3.1 O que monitorar e avaliar .. 89
 4.3.2 Fontes de dados para monitoramento e avaliação 89
4.4 Desenvolvimento e execução de um plano de ação ... 90
 4.4.1 Principais componentes de um plano de ação para a segurança dos PTWs 90
 4.4.2 Mobilizar e manter o apoio .. 91

Resumo .. 93
Referências .. 93
Prefácio

A frota de veículos motorizados de duas e três rodas (PTWs, do inglês Powered Two & Three- Wheelers) está crescendo rapidamente na maior parte do mundo. Os PTWs estão se tornando um dos principais meios de transporte tanto de pessoas como de produtos em muitos países, atraindo uma população de usuários cada vez mais variada. Porém, esta modalidade de transporte envolve mais de 286.000 mortes a cada ano em escala mundial – cerca de 23% de todas as mortes no trânsito. Este número alarmante de mortes potencialmente evitáveis salienta a necessidade de dar mais atenção aos PTWs e ao seu uso nas políticas de segurança viária. O planejamento eficaz para a segurança dos PTWs requer uma compreensão integral dos fatores de risco envolvidos em diferentes situações. A abordagem Safe System tem vários benefícios como um referencial para examinar os principais fatores de risco e abordagens de prevenção.

Este manual descreve a magnitude das mortes e lesões relacionadas aos PTWs, os principais fatores de risco, as maneiras de avaliar a segurança dos PTWs em determinadas situações e de preparar um plano de ação e as formas de selecionar, projetar, implementar e avaliar intervenções eficazes. O manual enfatiza a importância de uma abordagem ampla e holística que envolva a engenharia, a legislação e medidas para a aplicação da lei, bem como mudanças comportamentais.

Esperamos que a implementação dos passos propostos neste manual – concebido para um público multidisciplinar, incluindo engenheiros, formuladores de políticas, policiais, profissionais de saúde pública e educadores – ajude a elaborar novos planos, programas e outras iniciativas baseadas em evidências científicas a fim de aumentar a segurança dos PTWs e promover a análise e avaliação crítica das ações existentes. Também esperamos que contribua para fortalecer as capacidades nacionais e locais de executar medidas de segurança para os PTWs em todo o mundo. Encorajamos todos os leitores a apresentarem este manual às pessoas que possam usá-lo para salvar as vidas de usuários de PTWs e outras pessoas que usam as vias públicas.

Etienne Krug
Diretor
Gestão das Doenças Não Transmissíveis, Incapacidades, Violência e Prevenção de Lesões
Organização Mundial da Saúde

Saul Billingsley
Diretor Executivo da Fundação FIA

Jose Luis Irigoyen
Diretor
Transporte e Informação e Tecnologias de Comunicação Globais
Departamento de Práticas
Banco Mundial

Barry Watson
Diretor Presidente
Parceria Mundial para a Segurança Viária
Contribuições e agradecimentos

A Organização Mundial da Saúde (OMS) coordenou a produção deste manual e agradece a todos os que contribuíram para a sua preparação. Agradecimentos especiais às seguintes pessoas:

Comitê consultivo
Saul Billingsley (Fundação FIA), Gayle Pietro de di (Parceria Mundial para a Segurança Viária), Dipan Bose (Banco Mundial)

Coordenadores do projeto
Kidist Bartolomeos, Meleckidzedeck Khayesi

Autores principais
Kidist Bartolomeos, Jane Elkington, Alison Harvey, Rebecca Ivers, Meleckidzedeck Khayesi, Margie Peden, Tamitza Toroyan

Outras contribuições
Edwin Bastiaensen, Julie Brown, Martha Hijar, Kacem Iaych, Lisa Keay, Norfaizah binti Mohamad Khaidir, Muhammad Marizwan bin Abdul Manan, Evelyn Murphy, Nam Nguyen, Joan Ozanne-Smith, Jonathon Passmore, Brent Powis, Teri Reynolds, Eugenia Rodrigues, Kamala Sangam, Chamaiparn Santikan, Dinesh Sethi, Geetam Tiwari, Blair Turner, John Whitelegg

Revisão da literatura
Julie Brown, Guoqing Hu, Rebecca Ivers, Lisa Keay, Lisa Schonstein

Revisores
Edwin Bastiaensen, Rafael J Consunji, Pierre Maurice, Victor Pavarino, David Sleet, Stephen Stacey, Blair Turner, Joel Valmain, Andres Villaveces, John Whitelegg, George Yannis

Revisão
Julie Reza, Angela Burton

Apoio administrativo
Fabienne Jeanne Besson, Angelita Dee, Pascale Lanvers

Apoio financeiro
A OMS agradece o apoio financeiro recebido da Administração Nacional de Segurança do Trânsito Rodoviário dos Estados Unidos
Resumo executivo

As lesões no trânsito matam 1,25 milhões de pessoas a cada ano. Como todos os incidentes, os que envolvem veículos motorizados de duas ou três rodas (PTWs, do inglês Powered Two & Three-Wheelers), como motocicletas e bicicletas elétricas, são frequentemente previsíveis e preveníveis e não devem ser considerados inevitáveis. Os principais fatores de risco para lesões causadas por incidentes de trânsito com motocicletas são a direção sem capacete, a velocidade do veículo, o uso de álcool, o tráfego misto, a falta de proteção no veículo propriamente dito durante um incidente e a falta de infraestrutura segura para PTWs, tais como uma superfície irregular e riscos na beira da estrada. A redução ou eliminação dos riscos é um objetivo importante e realízável para as políticas viárias; no entanto, apesar da existência de intervenções comprovadas para prevenir incidentes com PTWs, em muitos lugares a segurança dos PTWs não recebe a atenção que merece.

Este manual contém informações que podem ser usadas no desenvolvimento e na implementação de medidas abrangentes para melhorar a segurança dos PTWs. O manual examina a dimensão das mortes e lesões relacionadas com PTWs e a importância de abordar os principais fatores de risco para os incidentes. As medidas apresentadas para realizar uma avaliação situacional visam priorizar intervenções, preparar um plano de ação e ajudar a implementar e avaliar as medidas de segurança para PTWs. Embora o foco do manual sejam as ações ao nível local ou regional, as estratégias apresentadas podem ser aplicadas ao nível nacional. Esperamos que a estrutura em módulos deste manual permita adaptá-lo para se ajustar às necessidades e aos problemas específicos dos países. O manual é aplicável em todo o mundo, mas se dirige especificamente aos decisores políticos e profissionais da área em países de renda baixa e média.
Introdução
Introdução

Implementação de boas práticas de segurança viária

O Relatório mundial sobre a prevenção de danos no trânsito (1), publicado em 2004, fez seis recomendações-chave aos governos nacionais, organismos internacionais, organizações não governamentais (ONGs) e ao setor privado para reduzir a crescente carga global das lesões no trânsito:

- Identificar um organismo principal no governo que oriente os esforços nacionais para a segurança no trânsito.
- Avaliar o problema, as políticas, os ambientes e as capacidades institucionais relacionadas às lesões no trânsito.
- Preparar uma estratégia e um plano de ação nacional para segurança viária.
- Alocar recursos financeiros e humanos para enfrentar o problema.
- Implementar ações específicas para prevenir incidentes no trânsito, minimizar as lesões e as suas consequências e avaliar o impacto destas ações.
- Apoiar o desenvolvimento das capacidades nacionais e a cooperação internacional.

Para ajudar os países a implementarem estas recomendações, o Banco Mundial, a Organização Mundial da Saúde (OMS), A Fundação FIA e a Parceria Mundial para a Segurança Viária (GRSP, na sigla em inglês) concordaram em produzir uma série de manuais ou guias de implementação.

Até o momento, esta colaboração produziu seis manuais de boas práticas sobre capacetes, direção sob o efeito de álcool, velocidade, cintos de segurança e cadeiras para crianças, sistemas de dados e a segurança dos pedestres (disponíveis em http://www.who.int/roadsafety/en/).

Por que foi elaborado este manual?

Este manual discute a segurança viária relacionada com veículos motorizados de duas ou três rodas (PTWs, do inglês Powered Two & Three-Wheelers) como resultado das crescentes evidências, vindas de países de renda baixa, média e alta, de que PTWs, pedestres e ciclistas (todos os usuários vulneráveis) envolvem-se cada vez mais em incidentes no trânsito que provocam lesões. Segundo o Relatório Global sobre o Estado da Segurança Viária 2015 da OMS, embora o número total de mortes no trânsito tenha se estabilizado em cerca de 1,25 milhão desde o ano 2007, cerca de um quarto dessas mortes ocorre entre usuários de PTWs. Apesar deste problema – criado em parte pelo crescimento no número de PTWs em muitos países de renda baixa e média (2) – as políticas nacionais para a proteção desses usuários vulneráveis são muitas vezes insuficientes.
Este manual visa dar apoio técnico aos formuladores de políticas, às ONGs, à indústria e a grupos de defesa de causas para que criem políticas e programas sobre a segurança dos PTWs que tenham plenamente em conta as evidências existentes sobre a eficácia das intervenções conhecidas e apliquem os princípios da abordagem Safe System (ver seção 1.5). Ao implementarem estas medidas, os países devem considerar as necessidades de todos os usuários das vias públicas, não só os que usam PTWs. Há uma boa documentação de medidas eficazes que abordam os principais componentes da segurança viária e que os países podem empregar para tornar o trânsito mais seguro – incluindo o sistema viário, o design de veículos e o comportamento dos motoristas (1).

Contexto

O objetivo global da Década de Ação para a Segurança Viária é estabilizar e reduzir o número previsto de mortes totais no trânsito, aumentando as atividades de segurança no trânsito a nível nacional, regional e global. As metas incluem salvar milhões de vidas melhorando a segurança viária e dos veículos, melhorar o comportamento dos usuários, inclusive os de PTWs, e melhorar a atenção após a ocorrência de incidentes (3).

O trabalho é guiado por um Plano Global (4), produzido pela OMS e por comissões regionais das Nações Unidas em cooperação com a Colaboração para a Segurança Viária das Nações Unidas (UNRSC, na sigla em inglês). O Plano Global estabelece as atividades prioritárias para os países com base em cinco áreas de trabalho principais (4):

- Gestão da segurança viária

<table>
<thead>
<tr>
<th>Objetivos e metas de desenvolvimento sustentável relacionados à segurança no trânsito</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODS 3: Assegurar uma vida saudável e promover o bem-estar para todos, em todas as idades</td>
</tr>
<tr>
<td>Meta 3.6: Até 2020, reduzir pela metade as mortes e lesões por incidentes de trânsito em nível global.</td>
</tr>
<tr>
<td>ODS 11: Tornar as cidades e os assentamentos humanos inclusivos, seguros, resilientes e sustentáveis</td>
</tr>
<tr>
<td>Meta 11.2: Até 2030, proporcionar o acesso a sistemas de transporte seguros, acessíveis, sustentáveis e a preço acessível para todos, melhorando a segurança viária por meio da expansão dos transportes públicos, com especial atenção para as necessidades das pessoas em situação de vulnerabilidade, mulheres, crianças, pessoas com deficiência e idosos</td>
</tr>
</tbody>
</table>

Fonte: baseado em (5)
Introdução

• Vias públicas e mobilidade mais seguras
• Veículos mais seguros
• Usuários mais seguros
• Resposta após a ocorrência de incidentes

A comunidade global para o desenvolvimento também tem destacado a importância de tratar as lesões causadas pelo trânsito como um assunto prioritário para promover a saúde e o bem-estar de todos, como refletido nos Objetivos de Desenvolvimento Sustentável (ODS) 3 e 11 (5), que abordam a segurança viária (ver quadro abaixo).

A Declaração de Brasília sobre a Segurança Viária (6) é outro chamado à ação impulsionado pelos Estados Membros que destaca o número desproporcional e crescente de mortes e lesões por motocicletas (especialmente em países de renda baixa e média) e requer o desenvolvimento e a implementação de legislação e políticas integrais que abordem a segurança das motocicletas.

A Década de Ação para a Segurança Viária, os ODS e a Declaração de Brasília são indicadores fortes de que as lesões causadas no trânsito estão sendo reconhecidos em escala mundial como um fenômeno importante e uma preocupação de saúde pública.

A quem se destina este manual?

Todos os setores (incluindo saúde, transporte, polícia, meio ambiente, justiça, indústria, serviços sociais e educação) têm uma responsabilidade comum para prevenir ou controlar adequadamente as lesões, mortes e incapacidades causadas por PTWs. Portanto, este manual foi concebido principalmente para os decisores políticos e líderes, responsáveis pela elaboração de políticas e programas governamentais e ONGs (em países de renda baixa, média e alta) que oferecem orientações políticas e práticas sobre segurança viária, transporte e ordenamento do território.

A boa implementação de políticas depende, em parte, de profissionais capacitados que conheçam os fatores que influenciam o risco de morte e incapacidades associadas aos incidentes com PTWs e as estratégias baseadas em evidências científicas para reduzir estes danos. Dessa forma, um público secundário para este manual abrange engenheiros, projetistas, responsáveis pela aplicação da lei, profissionais de saúde pública e educadores responsáveis por implementar e melhorar as práticas de segurança dos PTWs a nível nacional ou local. Também inclui pesquisadores e a comunidade científica como um todo (incluindo universidades, fundações e outros institutos de pesquisa privados sem fins lucrativos), além de ONGs.

Que temas são abrangidos pelo manual?

O manual cobre os principais aspectos do planejamento da segurança dos PTWs.

Módulo 1: Por que é necessário abordar a segurança dos PTWs? Este módulo destaca a importância da segurança dos PTWs no transporte e apresenta dados sobre
a magnitude das mortes, incidentes e fatores de risco ligados aos PTWs.

Módulo 2: Realizar uma avaliação situacional. Este módulo esboça os passos necessários para avaliar a situação de segurança dos PTWs e selecionar ações específicas para prevenir os danos causados por incidentes.

Módulo 3: Que intervenções abordam a segurança dos PTWs? Este módulo apresenta as principais intervenções baseadas em evidências científicas que abordam a segurança dos PTWs.

Módulo 4: Implementação e avaliação das intervenções para PTWs. Este módulo esboça os passos para a adoção de uma abordagem estratégica – do planejamento à implementação de intervenções baseadas em evidências científicas, bem como a avaliação desses esforços.

Estudos de casos de vários países e situações são incluídos em todos os módulos.

Como utilizar este manual?

Este manual promove uma abordagem sistemática para o planejamento da segurança dos PTWs e apresenta os principais princípios e exemplos que podem ser adaptados para atender às necessidades de planejamento da segurança dos PTWs em diferentes situações nos países. Os usuários são aconselhados a adaptar as informações à situação particular de cada país ou local. Embora reconheçamos que as seções individuais deste manual podem ser mais relevantes em alguns países que em outros, recomendamos que os usuários leiam todo o manual antes de começar a usar as informações aqui contidas. Todos os usuários deveriam ler o Módulo 2, que lhes permitirá a avaliar a sua própria situação de segurança para PTWs e selecionar ações específicas para realizar a prevenção, com base em outros módulos.

Cada módulo contém os principais princípios, ferramentas e referências para ajudar os leitores a determinarem uma área de segurança prioritária ou um nível de ação relevante para seu país ou situação local, ajudando-os a identificar as medidas que têm o maior potencial de promover melhorias. Embora seja absolutamente fundamental adaptar o conteúdo às situações locais e escolher o nível apropriado por onde começar, os usuários que adaptarem o conteúdo aos contextos locais deverão assegurar que os princípios fundamentais descritos em cada módulo não sejam modificados ou deturpados de forma muito significativa.

Quais são as limitações deste manual?

A situação de segurança dos PTWs, os fatores de risco e as condições sociodemográficas subjacentes variam em todas as regiões, países e dentro de estados, territórios e províncias, e não é possível apresentar (em um único documento) sugestões que sejam igualmente úteis em todos os ambientes e lugares. Este manual, portanto, concentra-se nos princípios fundamentais da abordagem Safe System e a
sua aplicação ao planejamento da segurança dos PTWs, dando exemplos selecionados de intervenções e programas comprovadamente eficazes em diversos ambientes.

O manual não é uma análise exaustiva da segurança dos PTWs e contém apenas alguns estudos de casos. Baseia-se em uma revisão da literatura e em outras contribuições dos peritos, grupos de consulta e revisores externos que contribuíram para o material. Incentivamos os usuários a usarem as referências apresentadas ao final de cada módulo para obterem mais informações sobre temas específicos.

Como foi elaborado este manual?

Um comitê consultivo de peritos dos quatro organismos colaboradores – A Fundação FIA, a Parceria Mundial para a Segurança Viária (GRSP), o Banco Mundial e a OMS – orientou o conteúdo deste manual. Um esboço do conteúdo do manual, baseado em um formato padrão desenvolvido para esta série de manuais de boas práticas – foi produzido pela OMS. O processo de desenvolvimento começou com a apresentação dos objetivos e metas do projeto à Colaboração para a Segurança Viária das Nações Unidas (UNRSC), a fim de definir o conteúdo. Depois disto, uma revisão da literatura foi conduzida pelo Instituto George para a Saúde Global da Universidade de Sydney, na Austrália. Uma equipe de peritos da OMS preparou o primeiro manuscrito do manual, que foi examinado pelo Comitê Consultivo e peritos nas áreas da saúde, transporte, planejamento de programas e setores políticos em todo o mundo.

Difusão do manual

Este manual está disponível nos principais idiomas, e incentivamos os países a traduzirem o documento para os idiomas locais. O manual será amplamente difundido pelos canais estabelecidos de distribuição das quatro organizações incluídas nesta série.

O manual também estará disponível como um PDF gratuito, que poderá ser baixado nos sites das quatro organizações parceiras. O download pode ser feito em http://www.who.int/roadsafety.

Como obter cópias impressas

Outras cópias do manual podem ser pedidas pelo e-mail traffic@who.int ou escrevendo para:

Gestão das Doenças Não Transmissíveis, Incapacidades, Violência e Prevenção de Lesões
Organização Mundial da Saúde
20 Appia Avenue, CH-1211
Genebra 27, Suíça
Referências

Por que é necessário abordar a segurança dos PTWs?
Por que é necessário abordar a segurança dos PTWs?

Referências: ... 8

1.1 O que são PTWs? ... 11

1.2 A importância dos PTWs para a mobilidade 11
 1.2.1 Como são usados os PTWs? 14
 1.2.2 Distribuição global dos PTWs 14
 1.2.3. Fatores contribuintes para a expansão da frota de PTWs .. 17

1.3 O problema das lesões relacionadas com PTWs 18
 1.3.1 Lesões e mortes relacionadas com PTWs 18
 1.3.2 Características demográficas de usuários de PTWs mortos ou traumatizados em incidentes no trânsito 20
 1.3.3 Onde ocorrem os incidentes com PTWs? 21
 1.3.4 Quando ocorrem as mortes relacionadas com PTWs? 22
 1.3.5 Custos das lesões associadas ao uso de PTWs 22

1.4 Fatores de risco para lesões relacionadas com PTWs 22
 1.4.1 Fatores de risco relacionados com os usuários 22
 1.4.2 Fatores de risco relacionados com o ambiente viário 26
 1.4.3 Fatores de risco relacionados com os veículos 27
 1.4.4 Outros fatores de risco. 28

1.5 A abordagem Safe System e a segurança de PTWs 28

Resumo ... 30

Referências ... 31
1. Por que é necessário abordar a segurança dos PTWs?

Em escala mundial, os PTWs envolveram mais de 286.000 mortes em 2013, ou cerca de 23% de todas as mortes no trânsito nesse ano (1). Este número alarmante de mortes potencialmente evitáveis salienta a necessidade de aumentar a atenção dada aos PTWs e ao seu uso nas políticas de segurança viária. A proporção de mortes entre usuários de PTWs em relação a todas as mortes permaneceu essencialmente inalterada de 2010 a 2013 em todas as regiões, exceto na Região das Américas, onde aumentou de 15% a 20% de todas as mortes no trânsito. Este aumento está associado ao rápido crescimento no número de PTWs na região. Alguns países africanos também observaram um aumento na proporção de mortes no trânsito vinculadas com uma ascensão rápida no uso de PTWs. O Relatório Global sobre o Estado da Segurança Viária 2015 (1) informou, por exemplo, que na República Unida da Tanzânia o número de motocicletas subiu de 46% de todos os veículos registrados em 2010 a 54% em 2013, enquanto a proporção de mortes de motociclistas subiu de 18% a 22% neste período.

Este módulo apresenta o contexto da segurança dos PTWs e a necessidade de dar mais atenção à segurança dos seus usuários, abordando os seguintes temas:

- definição de PTWs;
- a importância dos PTWs para a mobilidade;
- a dimensão do problema das lesões com PTWs;
- fatores de risco; e
- a abordagem Safe System e a segurança dos PTWs.

1.1 O que são PTWs?

Os PTWs são veículos motorizados de duas ou três rodas, acionados por um motor de combustão ou baterias recarregáveis. Os veículos motorizados podem ser divididos em diferentes categorias, como motocicletas (de rua, clássicas, de alto desempenho ou esportivas, de viagem, feitas sob medida, off-road), motonetas, bicicletas elétricas e triciclos (2). As principais categorias de veículos motorizados de duas rodas cobertos neste manual são as motocicletas (que incluem os ciclomotores) e as bicicletas elétricas. O único tipo de veículo motorizado de três rodas abrangido por este manual é o riquixá elétrico ou com motor a combustão (autorriquixá). O Quadro 1.1 apresenta as definições e descrições básicas destes veículos. Os problemas de segurança relacionados com bicicletas elétricas e autorriquixás são resumidos com exemplos da China (Quadro 1.2) e da Índia (Quadro 1.3, página 16).

1.2 A importância dos PTWs para a mobilidade

A mobilidade é um aspecto vital da vida cotidiana. As atividades cotidianas – trabalho, educação, recreação e cuidados de saúde – estão frequentemente situadas em diferentes lugares; como tal, as pessoas e produtos têm que ir de um lugar a outro usando diferentes modalidades de transporte.
Por que é necessário abordar a segurança dos PTWs?

Neste manual, “PTW” se refere a veículos motorizados de duas ou três rodas (incluindo bicicletas elétricas). Quando são citadas fontes, o manual mantém a definição usada pela fonte para manter o significado pretendido pelos autores. Como boa parte da literatura e da pesquisa nesta área enfatiza as motocicletas, este termo é usado quando são feitas referências a dados ou relatórios que consideraram especificamente as motocicletas.

VEÍCULOS MOTORIZADOS DE DUAS RODAS

Motocicletas e ciclomotores

Um veículo motorizado de duas rodas é qualquer veículo de duas rodas impulsionado por qualquer tipo de mecanismo que não envolva pedalar ou que complemente o ato de pedalar. Os PTWs podem ser divididos nas seguinte subcategorias (3):

<table>
<thead>
<tr>
<th>Categoria I</th>
<th>Categoria II</th>
<th>Categoria III</th>
<th>Categoria IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciclomotor ultra leve</td>
<td>Ciclomotor</td>
<td>Motocicleta leve</td>
<td>Motocicleta</td>
</tr>
<tr>
<td>Cilindrada</td>
<td>Mais de 50 cc</td>
<td>125 cc ou menos</td>
<td>Mais de 125 cc</td>
</tr>
<tr>
<td>Velocidade máxima</td>
<td>20 km/h</td>
<td>45 km/h</td>
<td>Mais de 45 km/h</td>
</tr>
<tr>
<td>Peso máximo</td>
<td>40 kg</td>
<td>65 kg</td>
<td>Mais de 65 kg</td>
</tr>
</tbody>
</table>

cc = centímetros cúbicos e é uma medida de volume (1 litro = 1.000 cc) referente ao tamanho do motor.

As bicicletas elétricas são uma categoria de veículo que inclui bicicletas impulsionadas pelo ato de pedalar, mas complementado pela energia elétrica de uma bateria. As bicicletas elétricas podem ser ainda divididas naquelas que têm estilo de bicicleta ou de motoneta. As bicicletas elétricas são regulamentadas para não exceder 20 km/h usando apenas a energia elétrica; porém, muitas bicicletas elétricas podem andar a velocidades acima deste limite, e são anunciadas como capazes de chegar a 40 km/h ou mais.

- **Bicicletas elétricas estilo bicicleta (BEEBs):** São semelhantes em aparência e função às bicicletas típicas a pedal.
- **Bicicletas elétricas estilo motoneta (BEEMs):** Têm aparência mais semelhante a uma motoneta movida a gasolina, baterias maiores e motores mais potentes.
- **Bicicletas elétricas de grande dimensão:** São maiores e mais potentes que uma bicicleta ou motoneta (frequentemente usadas para fins comerciais).

<table>
<thead>
<tr>
<th>Bicicletas elétricas estilo bicicleta (BEEBs)</th>
<th>Bicicletas elétricas estilo motoneta (BEEMs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de motor/ fonte de energia</td>
<td>Ato de pedalar complementado pela energia elétrica de uma bateria</td>
</tr>
<tr>
<td>Potência</td>
<td>Energia elétrica de uma bateria, com motor mais potente</td>
</tr>
<tr>
<td>Velocidade projetada</td>
<td>Baterias de 36 V e motor de 180–250 W</td>
</tr>
<tr>
<td></td>
<td>Baterias de 48 V e motor de 350–500 W</td>
</tr>
<tr>
<td></td>
<td>Geralmente 30–40 km/h</td>
</tr>
<tr>
<td></td>
<td>Algumas (ilegais em muitos países) podem chegar a 100 km/h</td>
</tr>
</tbody>
</table>

VEÍCULOS MOTORIZADOS DE TRÊS RODAS

Autorriquixás: Um autorriquixá é um veículo de três rodas impulsionado por um motor, geralmente usado para o transporte comercial de passageiros. A maioria dos autorriquixás é movida a baterias elétricas.
As bicicletas elétricas foram introduzidas no trânsito misto na China ao final da década de 1990 e servem como uma conveniente alternativa aos automóveis, com baixo custo e (percepção de) baixas emissões de carbono, numa infraestrutura de transporte público já superlotada (4). As bicicletas elétricas foram projetadas originalmente como bicicletas com pedais auxiliadas por um motor, permitindo maior aceleração e velocidade (5). Surgiram dois tipos principais – estilo bicicleta e estilo motoneta. O estilo motoneta, mais pesado, atinge maiores velocidades e pode ser usado sem pedalar (6).

Desde a introdução de legislação para lidar com as bicicletas elétricas em 1998, o número de bicicletas elétricas na China cresceu de aproximadamente 40 mil a 170 milhões em 2014. Éstima-se que a substituição de bicicletas elétricas velhas seja de aproximadamente 25 milhões de unidades por ano (7). A pesquisa confirma que a mobilidade em um contexto cada vez mais urbano está aumentando a demanda por bicicletas elétricas como uma opção de transporte. Segundo um estudo, os principais motivos para usar uma bicicleta elétrica são a velocidade e a facilidade de uso em comparação com uma bicicleta ou ônibus (8). Com o aumento da popularidade das bicicletas elétricas em muitos outros países em toda a Ásia e Europa, espera-se um aumento mundial da demanda – havia cerca de 466 milhões de bicicletas elétricas nas ruas em 2016 (9).

Problemas de segurança viária
Com a maior presença de bicicletas elétricas nas ruas da China, têm aumentado os incidentes resultantes em mortes e lesões, com uma crescente carga sanitária e econômica para as pessoas e comunidades. Durante o período 2004–2008, os registros policiais mostram que as mortes e lesões não fatais com bicicletas elétricas aumentaram cerca de cinco vezes (de 589 a 3107) e três vezes (de 5295 a 17.303), respectivamente (10). Um estudo de vigilância com dados policiais realizado durante o mesmo período na cidade de Hangzhou indicou que a taxa de lealdade relacionada às bicicletas elétricas aumentou em 2,7 por 100.000 pessoas por ano, enquanto a taxa geral de mortes por incidentes no trânsito caiu em 1,1 por 100.000 pessoas por ano (11).

Outros estudos recentes realizados em cidades constataram que as bicicletas elétricas representam uma parcela importante dos incidentes, reforçando ainda mais as percepções na mídia e nas comunidades de que as bicicletas elétricas representam riscos de segurança. Em Hangzhou, em 2011, houve 5765 casos relatados de incidentes relacionados a bicicletas elétricas, representando aproximadamente 29,1% de todos os incidentes no trânsito.

Estudos que usaram registros hospitalares sublinham a importância da questão. Por exemplo, entre outubro de 2010 e abril de 2011, um estudo transversal retrospectivo realizado na cidade de Suzhou coletou informações sobre usuários de bicicletas elétricas internados por lesões no trânsito. Estes apresentaram 57,2% das internações por incidentes no trânsito durante o período estudado, de 6 meses. A maioria teve traumatismos cranianos (46,4%), e mais de um terço da população estudada (35,9%) apresentou alguma forma de lesão cerebral traumática (12).

Apesar da falta de estudos abrangentes a nível nacional, há evidências claras e convincentes de que as bicicletas elétricas estão associadas com uma alta proporção de incidentes resultantes em um número cada vez maior de mortes e lesões graves.

Quais são os principais fatores de risco para as lesões com bicicletas elétricas?
A pesquisa indica que os usuários de bicicletas elétricas com carteira de habilitação têm menor probabilidade de se envolverem em incidentes nos quais tiveram a culpa pelo evento (10). Dado que as bicicletas elétricas são classificadas legalmente como “veículos não automotores”, a ausência de qualquer requisito de habilitação pode aumentar o risco de incidentes pela falta de conhecimentos dos usuários ou por má condução. Estudos realizados nas cidades chinesas de Suzhou e Hangzhou revelam que os comportamentos potencialmente inseguros mais comuns foram exceder o limite de velocidade, transportar passageiros ilegalmente, dirigir na contra-mão, desobedecer os sinais de trânsito e usar um telefone celular durante o percurso (13). O excesso de velocidade é um fator de risco fundamental para a segurança viária em todas as formas de transporte, e está claro que os usuários de bicicletas elétricas trafegam frequentemente a velocidades muito maiores que as permitidas pela lei chinesa. Este fato teve destaque em observações feitas à beira da estrada em Suzhou, onde, em um determinado local, até 83,3% dos usuários de bicicletas elétricas andavam acima do limite de 15 km/h (14). Uma importante constatação que corroborar a necessidade de fortalecer os requisitos associados a bicicletas elétricas é que os usuários de bicicletas elétricas equipadas com pedais têm menor propensão a violar a lei.

Continua…
Por que é necessário abordar a segurança dos PTWs?

1.2.1 Como são usados os PTWs?

Os PTWs são utilizados com diferentes finalidades em diferentes partes do mundo. Em países de alta renda, geralmente são usados para recreação (18), enquanto em países de renda baixa e média são mais usados para fins comerciais, principalmente como táxis ou veículos de entrega (19, 20). Nessas regiões, os PTWs são frequentemente usados para duas finalidades – para transporte (de produtos e pessoas) e como um negócio ou uma fonte de renda. Na Índia, por exemplo, 40% dos PTWs são usados para transportar produtos e 60% para transportar pessoas (18). No Brasil, principalmente em cidades com trânsito muito congestionado, uma grande parte dos novos PTWs é usada como táxis e para entregar produtos (19). Na região metropolitana de Seul, na Coreia do Sul, 56% das motocicletas são usadas para entregas de pacotes e alimentos (21). Nas Regiões do Sudeste Asiático e do Pacífico Ocidental da OMS, é comum ver condutores de PTWs transportando seus parentes. Na Europa, os PTWs são usados tanto para fins recreativos como para evitar a congestionamento de trânsito nas cidades (18). Este fenômeno é refletido nas estatísticas da indústria sobre a produção de veículos motorizados de duas rodas, que indicam que, em escala mundial, as motocicletas de alta potência (mais de 250 cc) são mais vendidas na América do Norte e na Europa (mais de 50%) que no Sudeste Asiático (5%) (ver figura 1.1).

1.2.2 Distribuição global dos PTWs

Na maior parte do mundo registra-se um número crescente de PTWs, representando uma população considerável e variada de usuários (18, 22). Em 2013, havia 516 milhões de PTWs registrados em todo o mundo, representando 29% de todos os
veículos registrados (1). É importante destacar que estes números excluem veículos não motorizados de duas e três rodas (que não precisam ser registrados) e que a falta de sistemas de registro em muitos países de renda baixa e média pode levar a uma subestimação.

Países de renda baixa e média representam a grande maioria da frota global de PTWs. De acordo com o Relatório Global sobre o Estado da Segurança Viária 2015, da OMS, 88% de todos os PTWs registrados em escala mundial em 2013 foram em países de renda baixa e média (1).

A Região do Sudeste Asiático da OMS teve a proporção mais elevada de PTWs registrados (74,5% de todos os veículos registrados) em 2013 (1) (ver figura 1.1). Enquanto a proporção de registros de veículos motorizados de duas ou três rodas aumentou em todas as regiões, o crescimento mais elevado (39%) foi observado na Região do Sudeste Asiático da OMS (1). A China tem uma das maiores fábricas de produção de motocicletas (23). Em precisamente 6 anos (2007–2013), o número de motocicletas na China aumentou em 21%, alcançando 109 milhões (24). Em outros países da Região do Pacífico Ocidental, como o Vietnã, os veículos motorizados de duas ou três rodas representam 95% de todos os veículos registrados, sendo registradas aproximadamente 7500 novas motocicletas por dia (25).

Figure 1.1 Global distribution of registered motorized vehicles, 2013

Fonte: baseado em (1)
Por que é necessário abordar a segurança dos PTWs?

Os sistemas de transporte informal fornecem mobilidade a um grande número de residentes urbanos e rurais em países de renda baixa e média, geralmente pela falta de transporte público acessível e organizado. Na Índia, por exemplo, só cerca de 100 das mais de 5000 cidades e municípios têm sistemas formais de transporte público. Em alguns lugares, sistemas de transporte informal onipresentes, embora mais caros, são as únicas formas de transporte público disponível, como mototáxis e autorriquixás, além dos jeepneys e jitneys de quatro rodas (26).

Quanto aos veículos para uso pessoal, as motocicletas e veículos de quatro rodas são mais populares que os autorriquixás – os veículos automotores de três rodas que operam como táxis de baixo custo e ocupam um nicho importante nos sistemas de transporte público de muitas cidades em países de renda baixa e média. Os autorriquixás fornecem conectividade de curta distância a um grande número de usuários de transporte público, como metrôs e ônibus. Geralmente têm um chassi simples e ligero com laterais abertas, uma parte superior de tela e um motor e controles como os de uma motocicleta. Costumam ter um banco atrás do condutor com espaço para até três passageiros. Alguns são concebidos para levar até seis a oito passageiros. O número atual de autorriquixás na Índia é entre 3 e 3,5 milhões, dentre aproximadamente 4,5 milhões em escala mundial. Em Bangladesh, os autorriquixás são chamados baby taxis; na Tailândia, tuk-tuks; e na Indonésia são conhecidos como bejak. Os autorriquixás a diesel estão sendo substituídos por autorriquixás a bateria na Índia e no Nepal. Com isto, a legislação tem agora o desafio de seguir o ritmo da tecnologia, pois os riquixás a bateria nem sempre são classificados como veículos motorizados e não estão sujeitos à Lei dos Veículos Automotores, nem cumprem os requisitos de segurança exigidos a outros veículos.

Os PTWs como riquixás e autorriquixás parecem ser muito vulneráveis nos fluxos de trânsito. A proporção de incidentes fatais envolvendo PTWs é muito alta: 70% na Tailândia e 60% no Camboja, Indonésia, Malásia e Sri Lanka. Um estudo detalhado realizado em seis cidades da Índia mostra que os pedestres representam uma proporção semelhante de mortes relacionadas ao trânsito nessas cidades (ver figura 1.2) (27).

QUADRO 1.3: Riquixás e autorriquixás: problemas de segurança no setor do transporte informal na Índia

<table>
<thead>
<tr>
<th>Caminhão</th>
<th>Ônibus</th>
<th>Automóvel</th>
<th>Veículos de três rodas</th>
<th>Motorized two-wheeler</th>
<th>Bicicleta</th>
<th>Pedestres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vishakhapatnam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vadodara</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ludhiana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bhopal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amritsar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fonte: baseada em (27).
Por que é necessário abordar a segurança dos PTWs?

1.2.3. Fatores contribuintes para a expansão da frota de PTWs

Vários fatores explicam o uso crescente de PTWs em diferentes partes do mundo. Em algumas regiões, o grande número de vendas de motocicletas está associado à disponibilidade financeira e de motocicletas baratas de baixa capacidade (29). Por exemplo, a crescente classe média do Brasil e uma grande indústria de produção de motocicletas desataram uma ascensão constante no número de usuários. Entre 1995 e 2008, o número de motocicletas no Brasil duplicou, chegando a 2 milhões em 2008 (19). Outros fatores que contribuem para o crescimento da frota de PTWs são (18, 23, 29):

- maiores níveis de renda em diferentes regiões;
- uma demanda de transporte não atendida;
- maior congestionamento do trânsito em áreas urbanas;
- custo crescente de outras formas de transporte (por exemplo, pelo aumento dos preços de combustíveis);
- comodidade e facilidade de estacionamento e manutenção;
- menor consumo de combustível.

Poluição do ar

Os PTWs têm um impacto negativo sobre o ambiente; por isso, fatores como a poluição do ar devem ser levados em consideração ao avaliar e abordar a função dos PTWs na mobilidade. Embora este manual se concentre na segurança, é importante fazer uma breve descrição do impacto ambiental dos PTWs (ver Quadro 1.4).
1.3 O problema das lesões relacionadas com PTWs

Embora os PTWs sejam importantes para a mobilidade das pessoas e produtos, também provocam um aumento considerável no risco de incidentes no trânsito. Os PTWs são um fator contribuinte significativo para as mortes e lesões por várias razões, como o grande número utilizado nas vias públicas e a vulnerabilidade dos seus usuários. Comparados com os automóveis, os PTWs são menos visíveis, e os seus usuários carecem da proteção oferecida aos ocupantes de carros. Outros detalhes sobre os diversos fatores que contribuem para este maior risco são apresentados na seção 1.4.

1.3.1 Lesões e mortes relacionadas com PTWs

Dados da OMS indicam que, em escala mundial, mais de 286.000 motociclistas morreram em incidentes de trânsito em 2013 (1). Isto representa quase um quarto de todas as mortes no trânsito nesse ano. Enquanto a maioria (90%) das mortes relacionadas com PTWs em todo o mundo ocorreu em países de renda baixa e média, a segurança dos PTWs é uma preocupação em todas as regiões (ver figura 1.3). Ao redor de 17% das mortes no trânsito nos países da Organização para a Cooperação e o Desenvolvimento Econômico (OCDE) em 2010 ocorreram entre usuários de PTWs (18).

QUADRO 1.4: PTWs e o ambiente

As emissões do setor do transporte são as fontes de gases do efeito estufa que mais crescem em escala mundial. A qualidade do ar é um dos principais determinantes da saúde; portanto, a redução da poluição do ar pela redução das emissões dos gases do efeito estufa pela melhoria dos transportes é uma maneira eficaz de melhorar a saúde. Isto pode ser feito melhorando a tecnologia dos combustíveis, e também promovendo uma mudança na forma como as pessoas e os produtos são transportados.

Os menores motores dos PTWs têm um consumo de combustível inferior ao dos veículos automotores, o que significa que um maior uso de PTWs no lugar de outros veículos automotores pode ser visto como uma mudança eficiente. Porém, os PTWs (excluindo as bicicletas elétricas) contribuem para a emissão de ozônio e partículas nas regiões baixas da atmosfera, produzindo também outros tipos de poluição que afetam a saúde humana e o bem-estar social. O grande uso de combustível de duas fases (que requer um tipo de motor mais simples e mais barato que o combustível de quatro fases, mais limpo) e o baixo nível de manutenção dos PTWs em muitos países de renda baixa e média são uma preocupação ambiental, pela poluição que provocam.

Leis que exijam a manutenção dos motores – por exemplo, a proibição de veículos cujos escapamentos estouram ou a instalação, de fábrica, de catalizadores – foram sugeridas como abordagens viáveis para reduzir a poluição causada por PTWs, exceto as bicicletas elétricas, em países de renda baixa e média. Um pacote diversificado de medidas com ênfase na promoção do uso seguro de transporte público provavelmente terá a melhor relação custo-eficiência para reduzir as emissões de gases do efeito estufa. As bicicletas elétricas servem como uma opção de baixas emissões aos PTWs motorizados, mas envolvem os mesmos riscos de lesões. Evidentemente, as bicicletas e triciclos não elétricos têm o menor impacto ambiental e oferecem outros benefícios à saúde humana através da atividade física.

Fonte: baseado em (30–32)
Entre 2010 e 2013, a proporção de mortes de motociclistas permaneceu em grande parte inalterada nas regiões da África e do Sudeste Asiático, enquanto houve uma ligeira diminuição nas regiões do Mediterrâneo Oriental, Europa e Pacífico Ocidental. A Região das Américas é a única onde houve um aumento (ver figura 1.4).

Os dados de mortalidade para as diferentes regiões, segundo o Relatório Global sobre o Estado da Segurança Viária 2015 (1), indicam uma grande variação entre as regiões na proporção de mortes relacionadas com PTWs:

- Enquanto os países africanos tiveram, em média, a menor proporção de mortes no trânsito entre usuários de PTWs (7%), alguns países da região tiveram uma proporção tão alta quanto a de países do Sudeste Asiático ou do Pacífico Ocidental.
- No Camboja e na Tailândia, onde há uma grande frota de PTWs, as mortes de motociclistas em 2013 representaram 70% e 73% das mortes totais no trânsito, respectivamente, enquanto na mesma região, em países de alta renda como a Austrália e a República da Coreia, as mortes de motociclistas representaram menos de 18% de todas as mortes no trânsito (1).
1.3.2 Características demográficas de usuários de PTWs mortos ou traumatizados em incidentes no trânsito

O perfil demográfico e socioeconômico dos usuários de PTWs mortos ou feridos gravemente varia muito por região e pelo nível de renda dos países.

- Em países de renda baixa e média, a maioria dos usuários de PTWs têm idade entre 15 e 34 anos, enquanto que em países de alta renda, os PTWs são mais usados por pessoas de 35 anos ou mais. Como tal, em países de renda baixa e média a maioria das vítimas de incidentes com PTWs está em seus anos de vida mais produtivos, com idade média de 25 anos. Em sua maioria, os motociclistas que sofrem lesões em países de renda baixa e média têm entre 20 e 30 anos (18).

- A maioria das mortes em países de renda baixa e média também ocorre na mesma faixa etária (entre 15 e 34 anos), enquanto em países de alta renda a média de idade para os usuários de PTWs mortos em decorrência de um acidente é cerca de 55 anos. Este perfil em países de alta renda reflete parcialmente a forma como os PTWs são usados, como veículos recreativos, em comparação com os países de renda baixa e média, onde são usados como o principal modo de transporte (18).

A Figura 1.5 mostra os dados mais recentes disponíveis de países selecionados, com a distribuição de mortes relacionadas com PTWs por faixa etária, destacando a variação entre os países. Em países de renda baixa e média (como Argentina, Brasil, Colômbia, México, Tailândia e Venezuela), adultos jovens com idade entre 15 e 34 anos representam mais de 60% de todas as mortes relacionadas com PTWs. Em países de alta renda (como os Estados Unidos da América (EUA) e o Reino Unido), quase 50% das mortes ocorrem em adultos com idade entre 35 e 59 anos; no Japão, pessoas com mais de 60 anos representam 34% das mortes, enquanto aquelas com 35 a 59 anos representam 36%.
1. Por que é necessário abordar a segurança dos PTWs?

Estudos realizados em países de renda baixa e média mostram que entre os usuários com idade entre 17 e 19 anos, os que pertencem a grupos de mais baixa renda tiveram uma taxa de lesões 2,5 vezes maior que os de grupos socioeconômicos mais abastados (18, 19, 34). Nos países examinados nesses estudos, a maioria das vítimas de lesões em incidentes de motocicleta trabalha por conta própria e não tem nenhuma cobertura social ou seguro de saúde (12, 18, 19).

1.3.3 Onde ocorrem os incidentes com PTWs?

Em países de todos os níveis de renda, os incidentes com PTWs ocorrem com mais frequência nas grandes cidades e outras áreas urbanas. Com relação ao risco absoluto de incidentes, os países de renda baixa e média têm apresentado um aumento significativo nas lesões no trânsito em áreas urbanas. O grande aumento no uso de PTWs, combinado ao fato de que os usuários vulneráveis precisam dividir as vias públicas com um número cada vez maior de automóveis e outros veículos automotores, são os principais fatores contribuintes para este aumento (35).

Dois estudos na Tanzânia mostram que a maioria dos incidentes com PTWs (entre 75% e 84%) nos quais o motociclista teve que ser tratado em um serviço de saúde ocorreu no asfalto ou em vias pavimentadas (36, 37). Um desses estudos mostrou que a maior densidade de trânsito nessas vias contribuiu para os incidentes notificados (37). Em países de alta renda como a França, foi demonstrado que os PTWs representam quase um quarto de todos os incidentes urbanos resultantes em lesões, apesar do nível relativamente baixo de uso de PTWs (1,4% de todos os percursos em dias úteis) (38).
Há evidências de que, em comparação com as áreas urbanas, os incidentes em áreas rurais podem ter taxas de letalidade e de hospitalização duas a três vezes maiores, mesmo depois do controle para a gravidade das lesões (39, 40). Há indícios de que a demora para receber atenção médica talvez seja um fator contribuinte (41).

1.3.4 Quando ocorrem as mortes relacionadas com PTWs?

O tráfego de dia e à noite envolve riscos diferentes para os usuários de PTWs (ver Módulo 2). Em países de renda baixa e média, os PTWs são frequentemente usados para fins comerciais, prestando serviços de transporte público ou sendo usados como veículos de entrega. Deste modo, a maioria dos incidentes ocorre durante o horário comercial. Incidentes noturnos associados a faróis defeituosos ou ausentes são também notificados em alguns países (42).

1.3.5 Custos das lesões associadas ao uso de PTWs

Os custos dos incidentes relacionados com PTWs recaem sobre as pessoas envolvidas no acidente e sua família, sobre o sistema de saúde, que oferece atendimento e serviços de reabilitação, e sobre a sociedade em geral, pela maior necessidade de infraestrutura, serviços de saúde e de apoio e perdas de produtividade. Os dados de países de alta renda sobre o custo do tratamento agudo, bem como os reembolsos para vítimas que não contam com um seguro de saúde, destacam a alta carga que o tratamento dos incidentes relacionados com PTWs coloca sobre o sistema de saúde. Um estudo recente, que examinou 323 vítimas de incidentes com bicicletas elétricas internados em hospitais na China, estimou um custo médio de US$ 1286 (12) para o tratamento. A direção sem capacete aumenta a gravidade das lesões, a duração da internação hospitalar e a necessidade de terapia intensiva, bem como a probabilidade de que o resultado final seja a morte ou uma incapacidade grave (43) (ver Quadro 1.3 sobre este problema emergente de saúde pública na China). A direção sem capacete aumenta o custo do tratamento. Estudos que examinaram os custos do tratamento agudo observaram custos 40 a 66% mais baixos em pacientes que estavam usando um capacete no momento do acidente (44, 45).

1.4 Fatores de risco para lesões relacionadas com PTWs

Os principais fatores de risco que contribuem para os incidentes, lesões e mortes relacionados com PTWs estão associados aos usuários, ao ambiente viário, aos veículos e aos serviços de saúde disponíveis. Resumimos aqui estes fatores, que são pilares fundamentais da abordagem Safe System. As intervenções para abordar estes fatores de risco são descritas no Módulo 3.

1.4.1 Fatores de risco relacionados com os usuários

Os fatores de risco relacionados com os usuários dizem respeito ao seu comportamento, bem como ao de outros condutores com quem interagem no trânsito. Embora alguns dos fatores de risco mais comuns relacionados com os
usuários (como o excesso de velocidade, direção sob o efeito de álcool e falta de experiência) se apliquem a todos os condutores, alguns comportamentos específicos envolvem um maior risco de incidentes ou lesões fatais.

Uso de capacete

O uso de capacete é um importante fator que influencia o risco de traumatismo craniano e morte nos incidentes. As lesões da cabeça e do pescoço estão entre as principais causas de morte e incapacidade grave entre usuários de PTWs. Durante uma colisão, dois mecanismos podem levar à lesão cerebral: o contato direto com uma superfície ou outro objeto e as forças de aceleração e desaceleração (46). Cada mecanismo causa diferentes tipos de lesões. A finalidade do capacete é reduzir o risco de lesão grave da cabeça e do cérebro ao reduzir a força do impacto ou a colisão com a cabeça. O risco de acidente craniano e morte também varia segundo a qualidade do capacete e a cobertura do rosto; embora a direção sem capacete seja um fator de risco, é importante notar que capacetes de má qualidade ou fora do padrão também aumentam o risco de acidente craniano e morte no caso de uma colisão.

Direção sob o efeito de álcool

A má direção como consequência do consumo de álcool é um importante fator que influencia tanto o risco de um acidente de trânsito como a gravidade e o resultado final das lesões (47-52). Segundo o estudo europeu SARTRE4 sobre atitudes de segurança viária, motociclistas europeus de vários países afirmaram beber e dirigir, embora houvesse diferenças regionais significativas na frequência entre países do norte, leste e sul da Europa. Em geral, os usuários que afirmaram beber e dirigir com mais frequência foram dos seguintes grupos: homens, pessoas com maior exposição (distância percorrida), pessoas que subestimam o risco de incidentes, pessoas que haviam estado envolvidas em um acidente anterior ou pessoas que já tinham sido sancionadas por dirigir sob o efeito de álcool (53).

O consumo de álcool também está associado a outros comportamentos perigosos de usuários de PTWs, como o excesso de velocidade e a direção sem capacete (54-57). Um estudo na Austrália revelou que os motociclistas envolvidos em incidentes decorrentes de intoxicação tiveram tempos de internação hospitalar mais elevados e períodos médios mais longos com incapacidades antes de voltarem à sua ocupação anterior, em comparação com outros fatores causais para os erros de direção e a perda do controle do veículo (51). Há evidências limitadas em países de renda baixa e média sobre o impacto do álcool na forma de dirigir. Em um estudo realizado em hospitais sobre lesões relacionadas com PTWs no Sri Lanka, a maioria (67%) dos incidentes noturnos esteve relacionada com o álcool (58).

Velocidade

A velocidade excessiva e inapropriada é a principal causa de lesões no trânsito em muitos países (59, 60). Quanto maior a velocidade de um veículo, mais longa é
Por que é necessário abordar a segurança dos PTWs?

A falta de proteção dos usuários de PTWs durante uma colisão os torna particularmente vulneráveis a lesões graves ou fatais associadas ao excesso de velocidade. A velocidade está associada a uma maior proporção de incidentes fatais de motociclistas em comparação com outros usuários, o que faz da velocidade um fator de risco particularmente importante para este grupo (18).

Por exemplo, nos EUA, em 2013, 34% de todos os motociclistas envolvidos em incidentes fatais estavam em velocidade acima da permitida, em comparação com 21% dos condutores de automóveis, 18% de caminhões leves e 8% de caminhões grandes (61). Outra pesquisa revelou que os motociclistas – em particular os que dirigem motocicletas esportivas – dirigem mais rápido e chegam a velocidades extremas com mais frequência que outros usuários (62). O excesso de velocidade também é relatado como um fator nos incidentes com PTWs em pistas segregadas para motocicletas (63).

Idade e nível de experiência dos usuários

Os usuários jovens e mais idosos têm um maior risco de lesões. Enquanto o maior risco de incidentes entre usuários jovens está associado predominantemente à sua falta de experiência e maior propensão para adotar comportamentos perigosos, o maior risco de lesão e a gravidade das lesões entre usuários mais velhos tendem a estar associados à fragilidade física e à diminuição na prática da condução (medida pela distância percorrida por ano). Foi demonstrado que o desempenho dos usuários mais velhos tende a diminuir após os 60 anos de idade (18, 64–66). Para os usuários jovens, fatores relacionados ao seu estado físico, motivações, estilo de condução e conscientização sobre os outros usuários das vias públicas também podem afetar o risco de incidentes (18).

A falta de familiaridade ou experiência com motocicletas e com o ambiente viário está associada a um maior risco de incidentes (67–71).

Erros de frenagem

Em situações de emergência, os usuários frequentemente não conseguem utilizar toda a capacidade de frenagem. Os erros de frenagem levam à perda do controle de PTWs, aumentando o risco de lesões graves e morte do condutor e dos passageiros (72–74).

Uso de drogas

Os estudos que examinaram a relação entre a direção e o uso de drogas constataram um maior risco de incidentes fatais (18). Estudos que consideraram a prevalência de diferentes tipos de drogas usadas por condutores que sofreram lesões em países da OCDE revelaram que a proporção de condutores que consumiram drogas foi maior entre usuários de PTWs que entre condutores de automóveis (18).

Outros comportamentos de risco

Os comportamentos perigosos de usuários de PTWs incluem: alta aceleração, velocidades muito altas, mudança de faixa ou condução em “zigzag”, competição e comportamentos agressivos. Estes fatores aumentam o risco de lesões e morte entre usuários de PTWs e outros usuários das vias públicas. Cada tipo de PTW envolve tipos específicos de comportamento perigoso (ver Tabela 1.1).
1. Por que é necessário abordar a segurança dos PTWs?

Falta de visibilidade

As situações nas quais o condutor de um veículo automotor olha mas não consegue ver o PTW que se aproxima estão documentadas como um dos fatores contribuintes mais significativos nos incidentes com PTWs em países de alta renda, como o Reino Unido (75, 76). A maior velocidade de aproximação de motocicletas contribui para um maior número de incidentes deste tipo em cruzamentos, possivelmente porque o motociclista está fora do campo de visão do outro condutor naquele momento (77).

Por seu tamanho menor e rápida aceleração, os PTWs muitas vezes não são vistos a tempo para evitar uma colisão. A dificuldade dos outros usuários de detectarem a aproximação de PTWs nos cruzamentos e violações à preferência de passagem são alguns dos problemas que podem levar a incidentes. Quanto mais visível um PTW, maior é a chance de que seja visto por outros automobilistas (75-78).

<table>
<thead>
<tr>
<th>Motivação para o uso</th>
<th>Características</th>
<th>Justificação do uso</th>
<th>Tipo de comportamento perigoso</th>
</tr>
</thead>
</table>
| Veículo conveniente no transporte de casa para o trabalho | Usuários jovens e mais idosos | • Econômico
• Mais fácil de estacionar
• Único meio de transporte próprio e da família | • A maioria não usa capacete
• Violação das regras de trânsito
• Transporte ilegal de parentes/crianças sem capacete |
| Necessidades de transporte ocupacionais | Usuários jovens e mais idosos com experiência | • Econômico
• Mais fácil de estacionar
• Exigência do empregador | • Transporte ilegal de carga e passageiros
• Dirigir sem capacete quando o empregador não exige
• Violação das regras de trânsito |
| Recreação e busca de sensações | Condutores jovens sem carteira de habilitação | • Desafio, testar os limites (competição agressiva, corridas), recreação (hobby) | • Envolvimento em competição agressiva, excesso de velocidade e acrobacias
• Dirigir sob a influência de drogas/álcool |
| Atividade criminosa | Usuários jovens, desempregados e sem habilitação | • Crime organizado e individual | • Muitas vezes não usam capacete
• Dirigir com companheiros
• Dirigir em áreas escolares e onde os jovens se reúnem
• Violação das regras de trânsito
• Dirigir sob a influência de drogas/álcool
• Omissão de socorro após causar acidente |

Fonte: baseado em (79)
Por que é necessário abordar a segurança dos PTWs?

1.4.2 Fatores de risco relacionados com o ambiente viário

Trânsito misto

A operação de PTWs no trânsito misto (não segregado) aumenta significativamente a probabilidade de incidentes com PTWs. Em países onde há uma grande frota de PTWs, o trânsito misto (em que a interação entre PTWs e veículos maiores é frequente) gera um maior risco de incidentes (80–82). O conflito no trânsito é o fator causal mais comum nos incidentes com PTWs (83–85). Um maior volume de trânsito em vias grandes e pequenas, assim como nos cruzamentos, aumenta a exposição de PTWs a outros veículos que se movem em diferentes velocidades, aumentando a probabilidade de incidentes (86, 87). Particularmente nos países de alta renda, a baixa familiaridade com PTWs por alguns condutores de automóveis – bem como a dificuldade em detectar os PTWs e avaliar a sua velocidade – pode fazer com que o trânsito misto seja perigoso para os usuários de PTWs (88, 89).

Apesar de proibida em alguns países ou jurisdições, a condução de PTWs por entre os demais veículos (sobre as linhas que separam as faixas) é comum em muitos países. Há relatos de que isto reduza o congestionamento do trânsito e o tempo de viagem por condutor de PTW – trazendo benefícios econômicos e ambientais (90). No entanto, poucos estudos examinaram os riscos desta prática à segurança dos usuários de PTWs. A principal preocupação de segurança está ligada ao risco de que outros veículos cruzem o caminho dos usuários de PTWs, por não os verem ou não esperarem que haja um PTW naquele lugar (91). Uma revisão desta prática indicou que está associada a menos de 1% dos incidentes com motocicletas, podendo chegar a 5%, embora o risco relativo não pareça ter sido o foco do estudo (90). Como a congestão do trânsito tende a aumentar na maioria das áreas urbanas do mundo, existe cada vez mais pressão para o uso desta prática por PTWs.

Desenho da infraestrutura viária

O desenho da infraestrutura viária (como a geometria e disposição das vias públicas) pode influir tanto na probabilidade como na gravidade dos incidentes com motocicletas (81). A pesquisa revela que os motociclistas são particularmente vulneráveis às colisões em curvas, vias de acesso (ou seja, trechos com alta curvatura) e rotatórias. Isto se deve principalmente à aceleração ou desaceleração, ou quando há problemas de estabilidade, podendo levar à perda de controle do veículo. Os cruzamentos e rotatórias estão associados a incidentes com motocicletas em função da violação das regras de preferência (76), maior velocidade de aproximação (85, 87) e violação dos semáforos (92). Porém, um estudo recente realizado na Austrália e Nova Zelândia demonstrou que o risco dos incidentes com motocicletas nas curvas e outros elementos viários, como cruzamentos ou vias retas, também variam segundo a finalidade da viagem (de casa para o trabalho ou recreação) (93). O estudo revelou que uma maior proporção dos incidentes ocorreu nas curvas durante o período recreativo enquanto a maioria dos incidentes nas vias retas e cruzamentos ocorreu durante o período de comutação (93). O mesmo estudo demonstrou que o desenho da infraestrutura viária pode ter um impacto sobre a gravidade do choque.
Elementos específicos do desenho identificados como fatores contribuintes para o aumento da gravidade incluem a largura da via e do acostamento, a aderência da superfície, o tipo e o raio das curvas, a distância de visibilidade horizontal e vertical, e equipamentos para as conversões, como o uso de semáforos nos cruzamentos (93).

Outros elementos mal projetados, como aqueles dedicados a reduzir a velocidade de outros usuários e a escolha do local para instalação de outros equipamentos usados para iluminação ou sinalização, também podem ter um impacto negativo sobre a segurança dos PTWs (18).

Condições das superfícies

A condição das superfícies das vias representa um risco particular de incidentes para usuários de PTWs (93). Superfícies irregulares, deterioração, buracos, meios-fios não pavimentados, tampas de bueiros, lombadas, ralos, derramamentos, má sinalização horizontal e detritos são fatores ligados às superfícies das vias que comprovadamente aumentam o risco de incidentes com PTWs (42, 94, 95).

Riscos à beira da estrada

Os riscos à beira da estrada podem ser objetos fixos como árvores, placas de sinalização, barreiras de segurança (guardrails), postes de uso geral e estruturas de drenagem, bem como objetos transitórios como automóveis estacionados, e todos eles representam maiores riscos aos usuários de PTWs. Uma colisão que envolva o contato físico com um objeto fixo à beira da estrada tem 15 vezes mais probabilidade de ser fatal (96). A gravidade da colisão de um PTW com um objeto fixo depende da velocidade da colisão, do ângulo de impacto, da superfície do objeto e das suas propriedades de absorção de impacto (93). Em um estudo que considerou tais fatores de risco, combinados com a velocidade, os objetos à beira da estrada foram os principais mecanismos das lesões fatais sofridas pelos motociclistas (97). Outro estudo com dados da Austrália e da Nova Zelândia chegou à conclusão de que quase todos os objetos fixos na beira da estrada são perigosos para os usuários de PTWs (93). Isto se deve principalmente ao fato de que todos estes objetos foram concebidos para a segurança dos automóveis e seus ocupantes, e não dos PTWs.

1.4.3 Fatores de risco relacionados com os veículos

Estabilidade dos PTWs

A estabilidade dos PTWs depende da velocidade e da aderência dos pneus com a via (72). Certos tipos de PTWs podem se tornar instáveis quando a aderência é reduzida (como em vias molhadas) ou quando as forças de aceleração e frenagem são muito altas (72). Ao contrário de veículos com quatro rodas, as motocicletas podem se inclinar ao fazer curvas. O ângulo que o usuário adota ao fazer uma curva é muito sensível a qualquer mudança na força aplicada, e qualquer aumento ou redução brusca neste ângulo leva à perda do controle e, portanto, a um maior risco de incidentes (72, 98).
Por que é necessário abordar a segurança dos PTWs?

Falta de proteção contra incidentes
A falta inerente de proteção contra incidentes dos usuários e passageiros de PTWs os põe em maior risco de lesões e mortes relacionadas com o trânsito (28, 99, 100). As lesões sofridas tendem a ser mais graves nos usuários de PTWs que nos ocupantes de automóveis, devido a esta falta de proteção. Além das lesões cranianas, os membros inferiores (incluindo a região pélvica) são a segunda parte mais lesada do corpo de motociclistas envolvidos numa colisão (69, 101).

1.4.4 Outros fatores de risco

Falta de planejamento urbano inclusivo
O crescimento rápido das cidades e populações urbanas excedeu o desenvolvimento das infraestruturas urbanas de transporte que atendem aos PTWs, resultando em um maior número de mortes de usuários de PTWs (102).

Infraestrutura limitada de transporte público
A falta de meios de transporte alternativos nos centros urbanos de países de renda baixa e média limita as opções dos habitantes. A maior demanda e uso de PTWs aumenta a pressão sobre a infraestrutura urbana, e foi demonstrado que a concorrência pelo espaço nas vias pode exacerbar ainda mais os riscos de lesões e morte entre os usuários (102).

1.5 A abordagem Safe System e a segurança de PTWs

As lesões no trânsito não devem ser aceitos como inevitáveis (47), e há medidas que podem ser aplicadas para melhorar a segurança DOS usuários de PTWs e outros usuários das vias públicas. Porém, isto requer a identificação e medição dos fatores de risco contribuintes. A abordagem Safe System (ver figura 1.6) aborda os fatores de risco e as intervenções relacionadas com os usuários, veículos e o ambiente viário, bem como a resposta após a ocorrência de incidentes, de maneira integrada (103–105).

A abordagem Safe System para a segurança viária reconhece que o transporte é importante para a sociedade e que deve ser seguro para todos os usuários das vias públicas nas suas interações. A abordagem Safe System procura eliminar os incidentes fatais e reduzir as lesões graves pela criação de um sistema de transporte seguro, que mitigue os erros humanos e considere a vulnerabilidade das pessoas às lesões graves. Isto é feito através de políticas centradas na infraestrutura viária, nos veículos e nas velocidades, com apoio de uma série de atividades de educação, regulamentação, aplicação da lei e sanções.

Foi demonstrado que a abordagem Safe System é aplicável em vários ambientes em todo o mundo – por vezes facilitando ganhos de segurança viária nos casos onde o progresso estancou (106).

Os principais princípios da abordagem Safe System são resumidos da seguinte forma (103):
1: Por que é necessário abordar a segurança dos PTWs?

- **Reconhecer a ocorrência de erros humanos no sistema de transporte.** As pessoas cometem erros no trânsito que podem levar facilmente a lesões e morte. A abordagem Safe System não ignora intervenções sobre o comportamento dos usuários, mas enfatiza que o comportamento é só uma dentre muitas áreas essenciais para a prevenção.

- **Reconhecer a vulnerabilidade e os limites físicos do corpo humano.** As pessoas têm uma tolerância máxima a forças violentas, para além das quais sofrem lesões graves ou morte.

- **Promover uma abordagem sistêmica.** Medidas de segurança viária combinadas produzem melhores resultados que medidas isoladas.

- **Promover a responsabilidade compartilhada.** A responsabilidade pela segurança no trânsito deve ser compartilhada entre os usuários e projetistas do sistema. Embora seja esperado que os usuários cumpram as regras de trânsito, os projetistas e operadores do sistema têm a responsabilidade de desenvolver um sistema de transporte que seja o mais seguro possível para os usuários.

- **Promover valores éticos na segurança viária.** O valor ético fundamental da
abordagem Safe System é que qualquer nível de traumatismo grave decorrente do trânsito é inadmissível. Os seres humanos podem aprender a se comportar com mais segurança, mas inevitavelmente ocorrerão erros em algumas ocasiões. Os erros podem levar a incidentes, mas mortes e lesões graves não são consequências inevitáveis.

Como observado na Década de Ação para a Segurança Viária, 2010–2020 (105), os princípios da abordagem Safe System são promovidos pela coordenação de cinco pilares de ação: administração da segurança viária, vias e mobilidade mais seguras, veículos mais seguros, usuários seguros e resposta mais segura após incidentes. A abordagem se afasta do critério de responsabilidade individual pelos usuários, adotando uma responsabilidade compartilhada por muitos setores diferentes do governo, da política, das ONGs e da indústria. A ideia é não só reduzir os erros dos usuários, mas também reduzir o risco de lesões graves quando são cometidos erros – através do planejamento coordenado para abordar todos os pilares de ação.

A abordagem Safe System tem vários benefícios como um referencial para a segurança dos PTWs:

• **Avaliação de uma variedade de fatores de risco.** A segurança dos PTWs deve ser examinada de um ponto de vista sistêmico, para considerar os diversos fatores que expõem os usuários a riscos, como a velocidade do veículo, o desenho e nível de manutenção das vias e o cumprimento das leis e normas de trânsito. O planejamento eficaz para a segurança dos PTWs requer uma compreensão integral dos fatores de risco envolvidos. Porém, é difícil alcançar esta compreensão se a pesquisa só se concentra em um ou dois fatores de risco. A abordagem Safe System muda o foco da pesquisa sobre a segurança dos PTWs para que deixe de se concentrar num conjunto limitado de fatores de risco.

• **Integração de intervenções abrangentes.** A melhoria da segurança dos PTWs exige dar atenção ao design dos veículos, à infraestrutura viária, aos controles de trânsito tais como os limites de velocidade e ao cumprimento das leis e normas de trânsito – as áreas abrangidas pela abordagem Safe System. Uma ênfase estreita em qualquer aspecto isolado é menos eficaz que a adoção de uma abordagem integrada para os diversos fatores envolvidos na segurança dos PTWs.

• **Colaboração entre as instituições.** Enquanto diferentes organismos podem ser responsáveis por aspectos específicos da segurança dos PTWs, a realidade é que, para melhorar a segurança dos PTWs, é necessária uma abordagem coordenada, que inclua a colaboração entre os responsáveis pela elaboração de políticas, decisores, pesquisadores, líderes políticos, a sociedade civil e o público. A colaboração pode assumir muitas formas, como a partilha de responsabilidades ou atividades conjuntas em um programa de segurança para os PTWs.

Resumo

As informações neste módulo podem ser resumidas da seguinte forma:

• A frota de PTWs está crescendo na maior parte do mundo, atrair uma população cada vez maior e mais variada de usuários.
1. A frota global de PTWs registrados aumentou em 16% entre 2010 e 2013.
2. Os PTWs estão se tornando um dos principais meios de transporte usados para mover pessoas e produtos em muitos países de renda baixa e média. O seu uso em países de alta renda é mais variado.
3. Os usuários de PTWs representam quase um quarto (23%) das mortes globais no trânsito. Há uma grande variação dentro das regiões e entre diferentes regiões na distribuição de mortes por categoria de usuários.
4. Os principais fatores de risco para as lesões no trânsito com PTWs são: dirigir sem capacete, uso de álcool e drogas, excesso de velocidade, tráfego misto, riscos à beira da estrada, estabilidade do veículo e erros de frenagem.
5. O planejamento eficaz para a segurança dos PTWs requer a compreensão integral dos fatores de risco envolvidos nos diferentes ambientes. A abordagem Safe System tem vários benefícios como um referencial para examinar os principais fatores de risco e abordagens para a prevenção.

Referências

Por que é necessário abordar a segurança dos PTWs?

1: Por que é necessário abordar a segurança dos PTWs?

Por que é necessário abordar a segurança dos PTWs?

Realização de uma avaliação situacional
Realização de uma avaliação situacional

2.1 O que é uma avaliação situacional? 39

2.2 Por que é necessária uma avaliação situacional? 40

2.3 O que é avaliado e quais são os componentes de uma
avaliação situacional? .. 41
 2.3.1 Avaliação da carga dos lesões e mortes relacionados com PTWs 41
 2.3.2 Avaliação das políticas, leis e regulamentações existentes para PTWs 42
 2.3.3 Avaliação das intervenções e programas existentes para PTWs 45
 2.3.4 Avaliação dos grupos de interesse e do público-alvo 45

2.4 Uso de resultados da avaliação situacional para ações
direcionadas .. 47

Resumo .. 48

Referências ... 48
O módulo 1 mostra que a segurança dos PTWs varia entre as regiões e os países, sendo muitos os fatores que contribuem para esta carga crescente. É preciso abordar os riscos, e para isto é necessária uma avaliação situacional integral que decida que ações e intervenções devem ser aplicadas para abordar a segurança dos PTWs.

Este módulo aborda as seguintes perguntas:

- O que é uma avaliação situacional?
- Por que uma avaliação situacional é necessária?
- O que ela avalia e quais são os seus componentes?
- Como são usados os resultados de uma avaliação situacional para fazer planos para aumentar a segurança dos PTWs?

Um resumo das intervenções que podem ser implementadas para melhorar a segurança dos PTWs é apresentado no Módulo 3.

2.1 O que é uma avaliação situacional?

Uma avaliação situacional envolve uma série de atividades relacionadas com a coleta, revisão, análise e interpretação das informações necessárias para compreender uma dada situação de segurança viária em uma população definida (1). Uma avaliação situacional eficaz da segurança dos PTWs deverá fazer um exame detalhado e metódico da magnitude do problema, os fatores de risco, as necessidades de prevenção, o ambiente político, os programas existentes e as partes envolvidas. A avaliação examinará cada elemento, as interações e inter-relações entre os diferentes elementos e o ambiente no qual cada elemento existe (2). Uma avaliação situacional requer a coleta e exame sistemático de dados fundamentais sobre o seguinte:

- **A magnitude do problema de incidentes com PTWs**: o número de lesões, mortes, incapacidades e custo, juntamente com as tendências e padrões de incidentes, lesões e mortes.
- **Os fatores de risco e de proteção para as lesões relacionadas com os PTWs**: o que aumenta o risco de lesão nas pessoas desta região, sub-região ou país, e que fatores reduzem estes riscos?
- **O contexto das lesões relacionadas com PTWs**: que características da infraestrutura de transporte, da política local, das percepções públicas e normas sociais podem afetar o risco de lesões por incidentes com PTWs e a probabilidade de adoção de estratégias que possam reduzir os riscos?
- **Intervenções já existentes**: políticas, programas e estratégias existentes para promover um ambiente mais seguro para os usuários de PTWs.
- **Com relação aos parceiros ou interessados diretos** que serão fundamentais para o planejamento e a implementação das medidas de segurança: qual é a sua capacidade de abordar esta questão? Quais são as suas preocupações? Qual é o seu...
nível de compromisso? Há exemplos existentes de parceiros que trabalharam em conjunto?

A avaliação situacional frequentemente se concentrará em um local definido e em um objetivo específico de segurança viária de PTWs, ou um conjunto de objetivos. Tanto o local como os objetivos definirão a profundidade e o alcance da avaliação.

2.2 Por que é necessária uma avaliação situacional?

Uma avaliação situacional fornece informações-chave que permitirão priorizar as decisões a tomar sobre a gestão, redução ou prevenção de incidentes, lesões e mortes com PTWs.

Uma avaliação situacional ajuda a:

- **Identificar o problema e as prioridades de ação.** A análise das informações colhidas ilustra os tipos de lesões comuns entre usuários de PTWs em uma área dada, onde estão as maiores necessidades de intervenção, o custo para os usuários de PTWs do cumprimento (ou incumprimento) de uma intervenção específica e as razões pelas quais os usuários de PTWs cumprem ou não as normas de segurança viária.

- **Apresentar evidências sobre as razões pelas quais é necessário apoiar uma intervenção específica.** Os programas bem sucedidos de segurança de PTWs necessitam do apoio de todos os interessados diretos, principalmente os responsáveis pela elaboração de políticas, usuários de PTWs e o público em geral. Dados precisos sobre a carga do problema em uma área específica e o potencial da intervenção proposta para reduzir esta carga ajudam a mostrar aos decisores políticos o que pode ser ganho com a implementação de intervenções baseadas em evidências científicas e eficazes.

- **Fornecer dados de base e evidências do progresso nos indicadores importantes para os programas de avaliação e de monitoramento.** O monitoramento e avaliação (M&A) é um componente fundamental de qualquer estratégia de segurança dos PTWs. Os dados da avaliação situacional ajudam a definir os indicadores de M&A na linha de base. Tais indicadores podem ser medidas de resultado (como mortes e lesões) ou medidas de processo vinculadas a intervenções específicas (como o cumprimento da legislação e a opinião pública sobre uma política para os PTWs). O apoio contínuo a uma ação específica frequentemente depende da apresentação de evidências de que as coisas estão mudando na direção certa (1).
2.3 O que é avaliado e quais são os componentes de uma avaliação situacional?

Uma avaliação situacional integral inclui a coleta sistemática de informações sobre a dimensão do problema dos incidentes, lesões e mortes com PTWs, os fatores de risco para esses resultados, a prevenção necessária e as oportunidades e barreiras (isto é, o contexto da implementação das mudanças para reduzir as lesões relacionadas com PTWs). Estas informações podem ser coletadas através de quatro tipos de avaliação:

- **Avaliação epidemiológica**: fornece informações sobre a dimensão do problema, os fatores de risco e de proteção.
- **Avaliação das políticas**: permite analisar os fatores contribuintes e facilitadores, bem como identificar as lacunas nas políticas, leis e regulamentações existentes.
- **Avaliação de intervenções**: avalia as intervenções passadas e presentes.
- **Avaliação dos grupos de interessados diretos e do público-alvo**: realiza um mapeamento sistemático dos parceiros favoráveis, neutros e contrários à intervenção e da sua capacidade de se envolver nas mudanças.

2.3.1 Avaliação da carga dos lesões e mortes relacionados com PTWs

A identificação do número de lesões e mortes relacionados com PTWs e o seu contexto, bem como sua comparação com as mortes entre outros grupos de usuários, é um ponto de partida para qualquer planejamento da segurança dos PTWs. Informações detalhadas sobre a carga dos lesões e mortes relacionados com PTWs fornecem evidências que podem contribuir para projetar adequadamente as intervenções que levarão a resultados quantificáveis. Estas avaliações, denominadas avaliações epidemiológicas, envolvem um estudo científico da ocorrência, distribuição, causas e fatores de risco dos lesões e mortes relacionados com PTWs em uma população dada (3).

A avaliação epidemiológica envolve:

- a medição da incidência dos incidentes e mortes relacionados com PTWs;
- a definição da distribuição etária e de gênero das pessoas que sofrem incidentes e mortes relacionados com PTWs;
- a descrição dos momentos e lugares onde ocorrem incidentes e mortes relacionados com PTWs;
- a análise das causas, riscos e fatores de proteção envolvidos; e
- a avaliação das consequências dos incidentes com PTWs.

Dependendo dos dados disponíveis, as seguintes variáveis podem ser consideradas para uma avaliação adicional:

- **Tempo**: em que dia da semana e em que hora do dia ocorre a maioria dos incidentes com PTWs?
- **Gravidade**: qual é a gravidade das lesões relacionadas com PTWs (tipos de lesão por gravidade e mortes)?
- **Custo**: qual é a dimensão do problema em termos dos custos de saúde e socioeconômicos?
- **Incapacidades**: que tipos de incidentes com PTWs levam a incapacidades ou resultados potencialmente fatais?
O nível da avaliação epidemiológica em um dado local será limitado pela disponibilidade de informações. Na maioria dos países de renda baixa e média há pouca disponibilidade de dados sobre um grupo específico de usuários (incluindo o número de lesões e mortes relacionados com PTWs), as circunstâncias que conduzem aos incidentes e dados sobre a cobertura das intervenções (como a taxa de uso de capacetes). De acordo com o *Relatório Global sobre o Estado da Segurança Viária 2015*, menos de um quarto dos 180 países que responderam ao inquérito da OMS sobre dados oficiais do trânsito tinham dados combinados sobre lesões fatais e não fatais relacionados com o trânsito, enquanto só 41% dos países notificaram dados sobre as taxas de uso de capacetes por motociclistas (4). Mesmo que haja dados disponíveis sobre o número de lesões e mortes relacionados com o trânsito, em geral não há sistemas de dados suficientemente bem desenvolvidos para permitir a desagregação dos dados por tipo de usuário (por exemplo, PTWs, pedestres) a fim de realizar uma avaliação epidemiológica integral. É de se esperar que as taxas de uso de capacetes variem enormemente dentro dos países, bem como entre diferentes países. Em tais circunstâncias, talvez seja útil buscar fontes secundárias de dados ou outros dados específicos extraídos de estudos locais. Apesar das suas limitações, as fontes mais acessíveis de dados relevantes tendem a ser usadas primeiro (ver Tabela 2.1 para as principais fontes de dados sobre lesões relacionados com o trânsito.) Nos meios onde não há nenhum dado, ou onde as fontes habituais não fornecem informações adequadas, novas informações sobre indicadores importantes podem ser recolhidas através de pesquisas preparadas especialmente para isso.

2.3.2 Avaliação das políticas, leis e regulamentações existentes para PTWs

A avaliação das políticas procura compreender os tipos, características e elementos específicos das políticas, leis e regulamentações existentes de segurança viária (e quaisquer lacunas nestas políticas), bem como o contexto no qual podem ser feitas reformas legislativas e políticas (5). A avaliação pode revelar a adequação das leis existentes e/ou da sua aplicação, sendo um passo necessário ao definir a direção de políticas futuras para PTWs. Porém, a adoção de leis relacionadas com PTWs é influenciada por muitos fatores, como: o ambiente político e a vontade política dos decisores, os recursos disponibilizados pelo governo para a sua execução e a aceitabilidade das leis para a maioria do público. Como tal, o planejamento e a implementação de uma avaliação integral das políticas devem ser realizados de forma gradual ou sistemática, para assegurar que todos os fatores sejam levados em consideração. As etapas são resumidas no Quadro 2.1.

O alcance da tarefa de realizar uma avaliação das políticas varia segundo o país. É importante que o enfoque seja adaptado ao contexto no qual a nova política (ou sua alteração) será adotada e aos objetivos específicos que sirvam para melhorar a segurança dos usuários de PTWs no país, região ou sub-região. Para que os resultados sejam bem utilizados, também é importante que a análise aprecie as principais instituições responsáveis pela formulação e aplicação das leis e regulamentações. Veja o Quadro 2.2 para conhecer um exemplo do uso de informações de uma análise de políticas para embasar uma reforma das normas sobre o uso de capacetes por motociclistas no Quênia.
Tabela 2.1 Principais fontes de dados sobre lesões e incidentes relacionados com o trânsito

<table>
<thead>
<tr>
<th>Fonte</th>
<th>Tipo de dado</th>
<th>Observações</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polícia</td>
<td>Número de incidentes, mortes e lesões no trânsito</td>
<td>O nível de detalhamento varia de um país a outro, e também tende a haver grandes diferenças dentro de cada país</td>
</tr>
<tr>
<td></td>
<td>PTWs envolvidos, outros veículos envolvidos</td>
<td>Os registros policiais podem estar inacessíveis</td>
</tr>
<tr>
<td></td>
<td>Idade e sexo das vítimas</td>
<td>A subnotificação é um problema comum</td>
</tr>
<tr>
<td></td>
<td>Avaliação policial das causas dos incidentes</td>
<td>Pode não haver dados precisos sobre os locais dos incidentes (como as coordenadas num mapa)</td>
</tr>
<tr>
<td></td>
<td>Uso de equipamentos de segurança (como capacetes)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Locais dos incidentes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atividades de aplicação da lei</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serviços de saúde (registros de internações em hospitais, prontos-socorros, registros traumatológicos, ambulâncias ou paramédicos, clínicas de saúde, médicos de família)</td>
<td>Lesões fatais e não fatais</td>
<td>O nível de detalhamento varia de um hospital a outro</td>
</tr>
<tr>
<td></td>
<td>Idade e sexo das vítimas</td>
<td>A causa das lesões pode não ser codificada adequadamente, dificultando a extração dos dados para a análise</td>
</tr>
<tr>
<td></td>
<td>Natureza das lesões</td>
<td>As informações sobre as vítimas talvez não possam ser desagregadas por tipo de usuário</td>
</tr>
<tr>
<td></td>
<td>Tipo de atenção recebida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uso de álcool ou drogas</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Registro civil</td>
<td>Lesões fatais</td>
<td>Em alguns países há dados mais completos que em outros</td>
</tr>
<tr>
<td></td>
<td>Idade e sexo das vítimas</td>
<td>A causa da morte pode não ser codificada adequadamente, dificultando a extração de dados para a análise</td>
</tr>
<tr>
<td></td>
<td>Tipo de usuário envolvido</td>
<td>A cobertura da população pode ser deficiente</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Departamentos governamentais e organismos especializados na coleta de dados para o planejamento e desenvolvimento nacional</td>
<td>Estimativas populacionais</td>
<td>Estes dados são complementares e importantes para a análise das lesões relacionados com o trânsito</td>
</tr>
<tr>
<td></td>
<td>Dados sobre renda e despesas</td>
<td>Os dados são coletados por diferentes ministérios e organizações (embora possa haver um organismo central que compila e produz relatórios, incluindo resumos estatísticos, estudos econômicos e planos de desenvolvimento). Estes dados podem ser importantes para o planejamento de intervenções e para reunir apoio para essas intervenções</td>
</tr>
<tr>
<td></td>
<td>Indicadores de saúde</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dados sobre a exposição ao uso de PTWs (como os quilômetros percorridos)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dados sobre poluição</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Consumo de energia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Níveis de alfabetização</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grupos de interesse especiais (institutos de pesquisa, organizações não governamentais de promoção de causas, organizações de apoio às vítimas, sindicatos de transporte, empresas de consultoria, instituições envolvidas em atividades de segurança viária, seguradoras e outros)</td>
<td>Número de incidentes no trânsito, incluindo lesões fatais e não fatais</td>
<td>As diversas organizações têm diferentes interesses, e os métodos de coleta de dados e de pesquisa podem não ser confiáveis</td>
</tr>
<tr>
<td></td>
<td>Tipos de usuários envolvidos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Idade e sexo das vítimas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Veículos envolvidos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Causas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Locais dos incidentes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Impactos sociais e psicológicos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intervenções sobre os fatores de risco</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sinistros/custos às seguradoras</td>
<td></td>
</tr>
</tbody>
</table>
PASSO 1: Realizar uma avaliação institucional

Identificar os organismos nacionais e regionais responsáveis pela segurança viária e suas funções e responsabilidades no que se refere a propor e implementar a legislação e regulamentação.

PASSO 2: Examinar as leis e regulamentações nacionais

Examinar todas as leis e regulamentações de segurança viária existentes no país e quaisquer alterações que estejam sendo preparadas.

PASSO 3: Avaliar as lacunas nas leis e regulamentações

• Há disposições incoerentes ou conflitivas na legislação?
• Há muitas exclusões e exceções à legislação?
• As leis ou normas cobrem todos os fatores de risco?
• Que fatores podem dificultar a aplicação da lei?
• As disposições da legislação podem ser implementadas ou aplicadas?
• A lei cumpre seu propósito, com base na análise de dados e outras informações?

PASSO 4: Avaliar a abrangência das leis e normas

• Avaliar a abrangência para os cinco principais fatores de risco:
 • Com base em evidências?
 • Há disposições relativas à aplicação da lei?
 • São previstas sanções apropriadas?

Avaliar a abrangência das leis e normas relativas à atenção após a ocorrência de incidentes, tendo em conta que tal atenção está inserida num sistema maior de atenção traumatólogica no país:

• Realizar uma avaliação rápida da estrutura institucional para a atenção traumatólogica.
• Assegurar que as leis e normas abordam os temas geralmente cobertos em um sistema maduro de atenção traumatólogica.

QUADRO 2.1: Passos para a realização de uma avaliação das leis e regulamentações de segurança viária

Fonte: baseado em (5)

QUADRO 2.2: Promoção de uma norma técnica sobre capacetes no Quênia

A avaliação das políticas deve ser adaptada ao contexto no qual as políticas novas ou alteradas serão aplicadas e deve procurar identificar as principais instituições responsáveis pela sua formulação e aplicação. Um bom exemplo disto ocorreu no Quênia em 2012, quando um comitê nacional multiinstitucional de segurança viária (que incluiu representantes do Ministério do Transporte, Ministério da Saúde, polícia, uma ONG de segurança e o Instituto de Normas Técnicas do País [KEBS]) identificou a revisão da norma nacional sobre capacetes (KS-77) como uma prioridade no país.

A revisão da KS-77 durou mais de 18 meses e incluiu uma análise técnica da legislação existente sobre capacetes, uma reunião de especialistas para examinar a legislação nacional existente sobre segurança viária e a contribuição de especialistas, que pediram que os capacetes cumprissem uma norma reconhecida de segurança para que melhorassem sua capacidade de reduzir as lesões cranianas durante uma colisão.

Um projeto de norma desenvolvido pelo KEBS foi partilhado com o grupo de trabalho, e um documento revisto foi amplamente divulgado para a análise pública. A norma revista foi aprovada em setembro de 2012, mas a implementação foi postergada até que houvesse uma maior disponibilidade de capacetes de qualidade que cumprissem a norma.

Fonte: baseado em (6)
2.3.3 Avaliação das intervenções e programas existentes para PTWs

Uma avaliação de intervenções ou programas avalia os programas existentes e as possíveis iniciativas de prevenção. É importante ter estas informações para embasar o processo de priorização e mobilizar o apoio dos grupos de interesse para promover o maior apoio possível às novas iniciativas. Ao contrário da avaliação epidemiológica descrita na seção 2.3.1, a avaliação de intervenções é usada para definir e priorizar as possíveis áreas de intervenção. Esta avaliação requer uma compreensão da situação atual em termos da implementação de programas, e é particularmente importante minimizar a duplicação de esforços e, em última análise, maximizar o impacto de qualquer esforço de prevenção de lesões relacionadas com PTWs. Algumas das questões que a avaliação de intervenções pode examinar nos programas existentes de segurança para PTWs são:

- **O estado dos programas e intervenções passados e existentes**: o que já está sendo feito no país, município, estado ou província?
- **Os tipos de intervenção e seu nível de implementação**: que intervenções foram implementadas e testadas no lugar? Qual é o nível de implementação de cada uma (nacional, regional ou local)?
- **A eficácia dos programas existentes**: qual é a eficácia em potencial dos programas (com base nos resultados das avaliações disponíveis ou nos últimos dados da pesquisa)?
- **Lacunas nos conhecimentos**: em que áreas faltam informações sobre o público-alvo?
- **Recursos disponíveis**: há um orçamento alocado pelo governo para a segurança viária e, especificamente, para segurança dos PTWs? Outros grupos de interesse (governo, setor privado ou ONGs) fornecem recursos?
- **Visibilidade da questão**: algum dos grupos de interesse proporciona oportunidades para chamar a atenção pública para a segurança dos PTWs?

2.3.4 Avaliação dos grupos de interesse e do público-alvo

Enquanto a avaliação das leis e normas existentes (seção 2.3.2) tem por objetivo fornecer informações para o planejamento das políticas, a avaliação dos grupos de interesse e do público-alvo permite entender o ambiente social onde estão sendo desenvolvidas e executadas essas políticas. Veja a Tabela 2.2 para uma lista de possíveis grupos de interesse na formulação das políticas de segurança dos PTWs.

Os principais objetivos de uma avaliação dos grupos de interesse e do público-alvo são:

- Identificar os principais parceiros e suas características, examinando como afetarão ou serão afetados por uma política (por exemplo, seus interesses específicos, possíveis expectativas em termos de benefícios, mudanças e resultados adversos).
- Consultar o público-alvo para identificar as suas preocupações, motivações e problemas que podem afetar o êxito da estratégia. A pesquisa participativa
é um componente importante da avaliação situacional. Quais são os fatores socioculturais que devem ser considerados ao selecionar a intervenção? Como pode ser tornada equitativa e acessível às pessoas social e economicamente desfavorecidas no público-alvo?

- Avaliar a possível influência dos parceiros no desenvolvimento, aprovação e implementação da política – incluindo possíveis conflitos de interesses – para compreender a relação entre os grupos de interesse e a capacidade de diferentes grupos de participar na formulação das políticas e avaliar a probabilidade de que contribuam no processo de formulação das políticas.
- Decidir como envolver os grupos de interesse no processo para assegurar que a política seja o mais forte e viável possível; em particular, considerar se são parceiros (como parte de uma força-tarefa ou grupo de trabalho) ou assessores (por exemplo, oferecendo assessoria sobre uma ou algumas poucas questões).

Para assegurar a participação de todos os grupos de interesse, é fundamental compreender a posição de cada grupo e as relações entre diferentes entidades e identificar claramente os grupos favoráveis e contrários às políticas de segurança viária. Um resumo do processo de análise dos grupos de interesse relacionado à correção de uma brecha na legislação sobre capacetes no Camboja é apresentado no Quadro 2.3. O quadro mostra o processo que a Cruz Vermelha no país (um organismo que trabalha na promoção da causa da segurança viária) percorreu para identificar os principais grupos de interesse e coletar informações com eles.

QUADRO 2.3: Compreensão dos principais decisores políticos para a mudança legislativa no Camboja

No Camboja, as lesões cranianas relacionadas com PTWs são um grande problema de saúde pública. Apesar das evidências da eficácia de uma legislação abrangente sobre capacetes para prevenir lesões cranianas, a legislação do país não exigia o uso de capacetes pelos passageiros de motocicletas. Isto resultava numa baixa taxa de utilização de capacetes entre passageiros.

Em 2013, coordenado pela Cruz Vermelha no país, começou o processo para eliminar esta brecha na legislação. Foi necessário compreender o processo legislativo e definir os passos a ser tomados, os organismos e as pessoas envolvidas em cada passo. A Cruz Vermelha, que foi o principal executor do programa, compreendeu desde cedo a importância de envolver os principais decisores políticos e obter o seu total apoio para promover mudanças na legislação.

Os esforços feitos para compreender os principais decisores políticos envolveram:

- identificar as pessoas mais importantes dentro de cada organismo (nas etapas de análise e aprovação); e
- determinar a sua função no processo e que pessoas tinham mais influência em cada etapa.

O processo serviu como uma oportunidade para que a Cruz Vermelha do Camboja participasse do processo de revisão da legislação e assegurasse a inserção de uma importante disposição na legislação que tratava dos capacetes para passageiros de motocicletas. Além disso, promoveu a participação de legisladores que foram importantes para promover esta causa.

Fonte: baseado em (2)
2.4 Uso de resultados da avaliação situacional para ações direcionadas

Os dados coletados na avaliação situacional, juntamente com informações sobre a eficácia das intervenções conhecidas para PTWs, fornecem evidências para embasar o processo de priorização das atividades de intervenção. A lista de intervenções baseadas em evidências científicas e seu nível de eficácia documentado são resumidos no Módulo 3. O processo de priorização que deve ser considerado no momento de...
identificar uma intervenção baseada em evidências, sua implementação e a execução do programa são apresentados no Módulo 4.

Os resultados da avaliação situacional devem ser usados para priorizar um público-alvo com os seguintes atributos:

- Jurisdições com leis integrais e eficazes e uma forte cultura de aplicação da lei.
- Áreas nas quais existe uma maior vontade política.
- Comunidades que apoiam plenamente a intervenção.

Esses três fatores são fundamentais para criar um ambiente favorável que permita que a implementação da intervenção seja bem sucedida e para alcançar um resultado positivo em termos da redução do número de lesões e mortes, ou da redução dos comportamentos perigosos.

Resumo

O conteúdo deste módulo pode ser resumido da seguinte forma:

- Uma avaliação situacional é fundamental para tomar decisões apropriadas sobre as ações e intervenções necessárias para abordar a segurança dos PTWs.
- Uma avaliação eficaz realiza um exame metódico da magnitude, dos fatores de risco, das necessidades de prevenção, do ambiente político, dos programas e recursos existentes e dos grupos de interesse envolvidos.
- As informações obtidas com a avaliação situacional, juntamente com informações sobre a eficácia das intervenções, fornece evidências para embasar o processo de priorização.
- A priorização de ações onde há um ambiente político favorável, uma boa legislação e uma forte cultura de aplicação da lei – com grande aceitação e apoio por parte da comunidade – deve levar a melhores resultados de segurança.
- Este módulo apresenta uma lista de verificação para a realização da avaliação situacional e a identificação das fontes de dados.

Referências

3
Intervenções para abordar a segurança dos veículos motorizados de duas ou três rodas
3 \ Intervenções para abordar a segurança dos veículos motorizados de duas ou três rodas

3.1 Intervenções específicas para melhorar a segurança dos PTWs

3.1.1 Intervenções eficazes e promissoras

3.1.2 Intervenções para a segurança dos PTWs com evidências insuficientes ou fracas

3.2 Intervenções gerais de segurança viária que podem melhorar a segurança dos PTWs

3.2.1 Intervenções relacionadas com vias mais seguras

3.2.2 Intervenções relacionadas com usuários mais seguros

3.2.3 Melhoria da atenção após a ocorrência de incidentes

Resumo

Referências
O MÓDULO 1 DISCUTIU a magnitude e os fatores de risco das lesões relacionadas com PTWs, e o MÓDULO 2 discutiu a importância e os principais componentes de uma avaliação situacional para o planejamento da segurança dos PTWs. Este módulo apresenta um resumo das principais medidas e intervenções que podem ser empregadas para melhorar a segurança dos PTWs. A Década de Ação para a Segurança Viária (2011–2020) (I) identifica um referenciais para nortear as ações de segurança para PTWs (Quadro 3.1) e deixa claro que um programa forte de segurança viária beneficiará todos os usuários, incluindo os de PTWs.

As informações são apresentadas da seguinte forma:

- Intervenções específicas para melhorar a segurança dos PTWs: esta seção resume as principais intervenções eficazes e promissoras que contam com evidências específicas para os PTWs.
- Intervenções gerais de segurança viária que podem melhorar a segurança dos PTWs: esta seção resume várias intervenções sabidamente eficazes para problemas gerais de segurança viária, mas que não contam com evidências específicas para PTWs. Elas incluem muitas práticas de segurança, bem como a atenção após a ocorrência de incidentes para os usuários envolvidos em colisões não fatais.

Gestão da segurança viária: As atividades incluem a criação de parcerias multissetoriais e a designação dos principais organismos com capacidade para desenvolver e liderar a implementação das estratégias, planos e metas nacionais, apoiadas pela coleta de dados e pesquisa para projetar as contramedidas e monitorar a implementação.

Vias e mobilidade mais seguras: As ações se concentram em melhorar a segurança e qualidade das redes viárias para beneficiar todos os usuários, principalmente os mais vulneráveis, incluindo usuários de PTWs. Para isto, é necessário avaliar as infraestruturas viárias e ter a segurança sempre em consideração ao planejar, desenhar, construir e operar as vias.

Veículos mais seguros: As atividades promovem a implementação universal de melhores tecnologias de segurança, tanto passivas como ativas, através da harmonização das normas de segurança relevantes e de incentivos para promover a adoção de novas tecnologias.

Usuários mais seguros: As atividades se concentram em melhorar o comportamento dos usuários, usando uma combinação de intervenções que promovem o cumprimento sustentado das leis e normas de conscientização e educação do público para aumentar as taxas de uso de capacetes e reduzir as taxas de direção sob o efeito de álcool e outros fatores de risco.

Resposta após a ocorrência de incidentes: As atividades se concentram em melhorar a capacidade da comunidade e do sistema de saúde para oferecer cuidados de emergência (pré-hospitaria e hospitalares) e reabilitação a longo prazo para as vítima das incidentes.

3.1 Intervenções específicas para melhorar a segurança dos PTWs

Várias intervenções específicas têm sido avaliadas em todo o mundo – algumas são comprovadamente eficazes, e outras são promissoras. Elas incluem intervenções que se concentram em medidas de engenharia das vias para minimizar a exposição aos cenários de alto risco, intervenções que promovem elementos de segurança padronizados nos veículos e a introdução e/ou o aplicação da legislação de segurança viária combinada com marketing social forte para promover a adoção das intervenções.

Um resumo das intervenções eficazes de segurança viária específicas para os PTWs é apresentado na Tabela 3.1, com base nos cinco pilares da Década de Ação para a Segurança Viária (1). A eficácia de cada intervenção se relaciona com a redução no número de mortes ou lesões, bem como outras mudanças quantificáveis no comportamento dos usuários visados pela intervenção. As intervenções são categorizadas em três grupos, segundo o nível de evidências: eficazes, promissoras ou com evidências insuficientes. A avaliação da eficácia e do impacto foi feita por meio de várias ferramentas desenvolvidas pela medicina baseada em evidências e pela pesquisa para avaliação de políticas públicas (2, 3).

Neste documento, são usadas as seguintes definições destas categorias:

- **Intervenção eficaz**: as evidências de estudos como revisões sistemáticas, estudos experimentais, estudos de caso-controle ou estudos de coorte demonstram que a intervenção é eficaz em reduzir a ocorrência de morte ou lesões relacionadas com PTWs ou em modificar os comportamentos, com viabilidade e boa relação custo-eficácia.

- **Intervenção promissora**: as evidências de estudos mostram que alguns benefícios de segurança resultaram desta intervenção, mas são necessárias outras avaliações em ambientes diversos, e por isso é preciso ter cautela ao implementar tal intervenção.

- **Intervenção com evidências insuficientes**: uma situação na qual a avaliação de uma intervenção não chegou a uma conclusão firme sobre a sua capacidade de reduzir as mortes e lesões ou modificar os comportamentos. Isto pode se dever à falta de evidências de qualidade ou à existência de evidências contraditórias. Além disso, este grupo pode incluir estratégias que não parecem funcionar – mas as evidências se limitam aos contextos nos quais foram avaliadas.

Uma breve descrição de cada uma das intervenções é feita na Tabela 3.1, e as seções seguintes apresentam exemplos de como foram implementadas em diferentes países.
Tabela 3.1 Principais medidas e intervenções específicas para melhorar a segurança dos PTWs

<table>
<thead>
<tr>
<th>Principais medidas</th>
<th>Intervenções específicas</th>
<th>Eficácia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Comprovada</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Promissora</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Evidências insuficientes</td>
</tr>
<tr>
<td>Vias e mobilidade mais seguras</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pistas exclusivas para motocicletas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pistas protegidas nas conversões e pista ou acostamentos mais largos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Remoção dos riscos à beira da estrada</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limitadores de velocidade e estruturas para acalmar o trânsito</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Melhorar as condições da superfície das vias</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modificar a composição dos materiais das barreiras à beira da estrada</td>
<td></td>
</tr>
<tr>
<td>Veículos mais seguros</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sistemas de freio ABS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Faróis noturnos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Faróis ligados durante o dia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Configuração para melhorar a estabilidade</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Airbags para motocicletas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sistemas de transporte inteligentes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Luces de freio</td>
<td></td>
</tr>
<tr>
<td>Usuários mais seguros</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elaborar e aplicar a legislação</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uso obrigatório de capacete</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normas técnicas sobre capacetes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sanções mais firmes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sistema de pontos por infracções</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uso de roupa refletiva e protetora</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uso de roupa refletiva</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uso de roupa protetora</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Roupa resistente à temperatura</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regulamentação e habilitação para PTWs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Registo obrigatório de veículos e habilitação para usuários de PTWs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sistema graduado de habilitação</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restrições de idade para crianças que dirigem ou são passageiros de PTWs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Proibição de múltiplos passageiros no banco traseiro de motocicletas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inspeção periódica para defeitos mecânicos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Altura mínima de passageiros no assento traseiro de motocicletas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Motor com menos cilindradas para usuários em fase de aprendizagem</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Treinamento</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prova de condução obrigatória para a obtenção da habilitação de motociclistas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Treinamento pós-habilitação</td>
<td></td>
</tr>
<tr>
<td>Resposta após a ocorrência de incidentes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Remoção de capacete/protetor de pescoço no lugar do incidente</td>
<td></td>
</tr>
</tbody>
</table>
3.1.1 Intervenções eficazes e promissoras

Intervenções relacionadas com vias mais seguras

A única intervenção comprovadamente eficaz nesta categoria é o uso de pistas exclusivas para motocicletas. Outras medidas de engenharia do trânsito, como a introdução de pistas protegidas para conversões, acostamentos mais largos e a remoção dos riscos na beira da estrada, são consideradas intervenções de segurança promissoras.

Pistas exclusivas para motocicletas

Um dos principais fatores de risco para PTWs no trânsito é a sua interação com outros veículos mais rápidos e pesados. Pistas exclusivas para motocicletas são usadas principalmente para separar as motocicletas do trânsito geral, numa pista separada (seja por uma barreira física ou uma estrutura) da pista principal onde trafegam os outros veículos. O objetivo desta medida é reduzir o risco de colisão ou lesões aos motociclistas, retirando-os das condições onde a interação com veículos maiores é frequente (4, 5) e pode resultar em incidentes (6). Em muitos ambientes, as mesmas vias são usadas por PTWs e por outros tipos de veículos motorizados, não motorizados e pedestres, todos a diferentes velocidades. Como a maioria das vias foi construída originalmente para carros, é preciso regulamentar o uso de PTWs nas vias de mais alta velocidade (autoestradas e vias com muitas faixas) ou separar os PTWs dos outros veículos para reduzir os incidentes e melhorar a capacidade da via (7).

A segregação pode ser benéfica e aceitável para o público em geral quando a proporção de usuários de PTWs é maior que 20-30% de todos os veículos – como é o caso em muitos países de renda baixa e média (8).

A segregação das motocicletas de outros veículos usando pistas exclusivas é uma intervenção amplamente aplicada em países da Região do Pacífico Ocidental, como a Malásia (9). A primeira pista exclusiva para motocicletas foi construída na Malásia no início da década de 1970, e a sua eficácia na redução dos incidentes está bem documentada (ver Quadro 3.2). Esta medida contribuiu para uma redução de quase 40% nos incidentes com motocicletas nas áreas da Malásia onde foi implementada (8). O excesso de velocidade é frequentemente descrito como o fator causal da maioria dos incidentes ocorridos nestas pistas (10).
Intervenções para abordar a segurança dos veículos motorizados de duas ou três rodas

3: Intervenções para abordar a segurança dos veículos motorizados de duas ou três rodas

Desenho das vias

Como descrito no Módulo 1, os PTWs correm um risco particular de colisão nas curvas, conversões, junções (isto é, vias com alta curvatura) e rotatórias (devido à aceleração ou desaceleração), ou nos casos em que a estabilidade do veículo está em jogo. Alguns materiais das superfícies das vias, e também da sinalização horizontal, têm mais aderência que outros, e este aspecto do desenho das vias é importante para os motociclistas. Foi demonstrado que o desenho das vias e cruzamentos, as alterações nos desenhos existentes, bem como acostamentos com larguras apropriadas têm um impacto significativo sobre os incidentes com motocicletas e a gravidade das lesões.

Um estudo em 36 cruzamentos na Malásia demonstrou que pistas de conversão exclusivas ou protegidas (para virar à direita) podem reduzir as colisões por trás com motocicletas (17). Este estudo também constatou que ocorrem 25% mais incidentes com motocicletas nos cruzamentos sem acostamento que naqueles que têm um

QUADRO 3.2: Pistas de motocicleta segregadas na Malásia

A segregação das motocicletas de outros veículos usando pistas exclusivas pode ser benéfica (e aceitável para o público em geral) quando os PTWs representam mais de 20-30% de todos os veículos – como é o caso em muitos países de renda baixa e média (8). A segregação é uma intervenção amplamente aplicada em países da Região do Pacífico Ocidental como a Malásia (9), onde a avaliação das pistas para motocicletas ao longo da Estrada Federal No. 2 constatou uma redução de até 39% nos incidentes com motocicletas (11). As pistas para motocicletas foram mais benéficas quando o volume de trânsito foi maior que 15.000 veículos por dia e quando a proporção de motocicletas no trânsito foi entre 20% e 30%. A razão benefício/custo de uma pista exclusiva para motocicletas variou de 3,3 a 5,2, segundo os pressupostos usados ao calcular os custos dos incidentes com motocicletas e a capacidade das pistas exclusivas (12).

Porém, o excesso de velocidade é frequentemente relatado como um fator-chave para os incidentes com PTWs nas pistas segregadas (10), e nem todos os motociclistas usam as pistas. Além disso, durante a construção inicial das pistas segregadas na Malásia, havia conhecimentos limitados sobre os critérios para o desenho das pistas e pouca experiência com as necessidades e o comportamento dos motociclistas (13, 14); dessa forma, alguns dos critérios de desenho utilizados foram possivelmente inadequados (14). Por exemplo, o uso de barreiras de segurança, instaladas para separar as motocicletas do trânsito principal, pode constituir um risco de lesão aos motociclistas (14, 15). Para mitigar este risco, foram usados tubos plásticos ou uma segunda barreira abaixo da barreira existente, para evitar que os usuários deslizassem por baixo das barreiras horizontais e oferecer proteção contra a colisão com os postes de apoio metálicos.

Embora a largura das pistas para motocicletas na Malásia varie, um estudo observacional que usou gravações digitais de motociclistas usando as pistas exclusivas sugeriu que as pistas devem ter pelo menos 1,7 metros de largura para permitir que os veículos mais lentos sejam ultrapassados. A entrada ou saída da pista exclusiva pode ser a situação mais perigosa nestes casos, pois os motociclistas devem tomar uma decisão crítica sobre entrar ou sair do fluxo de trânsito (16).
acostamento de mais de 1 metro; portanto, acostamentos pavimentados com mais de 1 metro podem ajudar a reduzir os incidentes com motocicletas.

Pistas mais largas em vias principais e secundárias e um maior número de pistas em grandes estradas estão associados a uma redução dos incidentes com motocicletas (17). A visibilidade e a sinalização adequada nos cruzamentos e rotatórias também ajudam os motociclistas a administrar sua velocidade ao se aproximarem do cruzamento. A sinalização apropriada permite que os motociclistas compreendam claramente as condições das vias à frente e estejam preparados. Como as motocicletas são veículos relativamente pequenos, outros veículos nas vias, a sinalização, a vegetação e outros objetos podem facilmente ocultá-los, e o desenho de cruzamentos e rotatórias deve considerar este fato.

Limites de velocidade e medidas para acalmar o trânsito

As medidas para acalmar o trânsito são eficazes na redução do número de colisões para os veículos em geral. Porém, o desenho de tais intervenções pode ter um impacto negativo sobre os motociclistas. Um relatório da OCDE (7) cita os obstáculos colocados nas vias, como quebra-molas e outros pequenos objetos verticais projetados para reduzir a velocidade, como exemplos de como tais intervenções podem ser perigosas para motociclistas.

Os motociclistas precisam ser alertados destes obstáculos pelo uso de alguma outra medida de redução de velocidade, como marcas horizontais nas vias (com aderência adequada). A localização destes métodos para acalmar o trânsito (principalmente os voltados para outros tipos de veículos) também deve considerar a capacidade dos motociclistas de percorrer-los com segurança (7). Por outro lado, uma revisão sistemática recente de intervenções eficazes para prevenir as lesões de motociclistas indicou que dois dos três estudos encontraram uma redução dos incidentes com motocicletas após a introdução de zonas de baixa velocidade nas áreas urbanas (18).

Remoção de riscos na beira da estrada

O impacto com um objeto na beira da estrada aumenta a gravidade dos incidentes (14, 19, 20). Os objetos fixos no ambiente viário representam um risco substancial para os motociclistas e resultam em muitas lesões graves e mortes (21). A eliminação dos riscos na beira da estrada, como árvores e postes, e o uso de equipamentos menos agressivos pode reduzir significativamente a gravidade das lesões de motociclistas (7, 22), por criar uma “zona limpa” que não só minimiza o risco de que um motociclista se choque com algum objeto perigoso, mas também lhe dá espaço para corrigir eventuais erros (7). A escolha do local dos equipamentos usados para iluminação ou sinalização também pode ter um impacto negativo sobre a segurança dos PTWs (7). Barreiras de segurança são frequentemente usadas para separar os veículos dos riscos à beira da estrada, mas o desenho destes equipamentos deve levar em conta as necessidades dos motociclistas. Houve muitos debates sobre as melhores barreiras de segurança para motociclistas. Os postes expostos no sistema de barreiras são as grandes causas de lesões (23-25). O relatório da OCDE observa que há várias
soluções que podem ser usadas para proteger os motociclistas que deslizam e se chocam com os postes expostos (7). Grades de arame são cada vez mais usadas como proteção contra os riscos à beira da estrada, bem como para separar as pistas. Um estudo não encontrou diferenças significativas na eficácia de grades e outros tipos de barreiras de segurança descontínuas (26). Há crescentes evidências de que a posição do motociclista ao colidir com uma barreira de segurança pode ser mais importante que o tipo de barreira utilizado (26).

O relatório da OCDE contém recomendações para o desenho das barreiras de segurança que permitem que um motociclista caído deslize pela superfície em vez de se chocar com qualquer componente específico do sistema. Há evidências importantes de que o impacto com objetos fixos, como postes, é mais perigoso para os motociclistas que o impacto com as barreiras (21), corroborando a necessidade de barreiras para prevenir o impacto com tais objetos. O relatório também recomenda que seja dada prioridade à melhoria das barreiras de segurança em curvas e reitera a importância da instalação e manutenção adequada de sistemas de barreiras de segurança (7).

Intervenções para tornar os veículos mais seguros

Há duas intervenções comprovadamente eficazes nesta categoria: os sistemas de freio ABS e o uso de faróis à noite. O uso de faróis durante o dia é considerado promissor.

Sistemas de freio ABS

Os freios ABS em PTWs servem para ajudar os usuários a manter o controle do veículo durante uma frenagem de emergência. O sistema impede que as rodas travem durante a frenagem e podem dar mais confiança aos usuários para que utilizem todo o potencial dos freios (27). Os freios ABS melhoram a estabilidade e o manuseio de PTWs. Estudos sobre a eficácia dos freios ABS constataram que a taxa de incidentes fatais em motocicletas equipadas com freios ABS é cerca de 37% mais baixa que naquelas com freios comuns (27). Quase a metade de todos os incidentes graves e fatais com motocicletas acima de 125 cc poderia ser evitada com o uso de freios ABS (28). No dia 1o de janeiro de 2016, a UE instituiu uma legislação que exige a instalação de freios ABS em todas as motocicletas com motores maiores que 125 cc.

Sistema de freio ABS – como funciona

Os freios ABS para motocicleta são um sistema de segurança que impede as rodas de travarem durante a frenagem. Ayudam os usuários a manter estabilidade e o controle durante uma frenagem forte, permitindo que as rodas mantenham a tração com a superfície. Em certas situações de emergência, os freios ABS ajudam a reduzir a distância de frenagem. Embora sejam tecnicamente apropriados para a maior parte dos PTWs, na prática só estão disponíveis em motocicletas com motor maior que 250 cc.

Fonte: baseado em (7)
Faróis à noite

A literatura revela que embora a precisão da avaliação da velocidade de aproximação de automóveis permaneça constante em todas as condições de iluminação, a precisão desta avaliação no caso de motocicletas (com um único farol dianteiro) cai significativamente nas condições de menor iluminação, no início da noite e à noite (29, 30). Portanto, o uso de faróis à noite e o bom posicionamento dos faróis melhoram a segurança dos usuários de PTWs por aumentarem a visibilidade (álém do campo de visão) dos usuários. Um estudo constatou que um farol dianteiro triplo, em vez do típico farol dianteiro isolado, permite que os outros usuários avaliem melhor a velocidade de aproximação de motocicletas (29).

Faróis ligados durante o dia

A promoção do uso de faróis durante o dia aumenta a visibilidade dos PTWs para os outros usuários, reduzindo a ocorrência de incidentes relacionados com a visibilidade em 29% a 40% (31). Na Europa, os usuários de PTWs que mantêm os faróis ligados durante o dia têm uma taxa de colisões cerca de 10% mais baixa (28). Em países onde foi implementada a obrigação de seguir esta prática, o descumprimento da lei tem sido descrito como um problema (32), mas o cumprimento das normas pelos usuários de PTWs é fundamental para concretizar os benefícios plenos de qualquer intervenção de segurança viária. O cumprimento da legislação sobre o uso de faróis durante o dia é dificultado por diversos fatores (como sistemas de iluminação defeituosos) e pela escolha pessoal de ligar ou não os faróis. Os fabricantes podem desempenhar uma função importante na promoção do uso de faróis durante o dia. Por exemplo, a instalação de sistemas que liguem os faróis automaticamente quando o motor é posto em funcionamento, sinais no painel que indicam quando qualquer farol deixa de funcionar e faróis sobressalentes são algumas das medidas que os fabricantes podem empregar para ajudar a melhorar o cumprimento das normas (33).

Intervenções para melhorar a segurança dos usuários

Aprovação e aplicação de legislação integral sobre o uso de capacetes

A aplicação da legislação sobre o uso de capacetes reduz significativamente tanto as lesões fatais como as não fatais; a taxa de lesões não fatais diminui em aproximadamente 20% (34). Foi demonstrado que o número de traumatismos cranianos relacionados com motocicletas diminui em até 33% após a implementação de leis que tornam obrigatório o uso do capacete, reduzindo também o tempo de internação hospitalar e a gravidade das lesões (35). Há evidências em países de renda alta e baixa de que é possível alcançar o máximo cumprimento (mais de 95%) da legislação se forem utilizadas medidas ativas para a sua aplicação (36). Embora vários países tenham introduzido legislação deste tipo nas últimas décadas, muitos países de renda baixa e média ainda não o fizeram. De acordo com o Relatório Global sobre o Estado da Segurança Viária 2015 (37), só 50% dos países contam com uma legislação integral que estabelece normas sobre o uso de capacetes e se aplica a todos os usuários, todas as vias e todos os tipos de motor (ver Quadro 3.3). Em países onde os governos
locais revogaram ou enfraqueceram a legislação existente sobre o uso obrigatório, foram observados efeitos negativos, com um aumento das mortes em geral e das mortes por lesão cerebral traumática (38, 39).

QUADRO 3.3: **Cobertura das leis e normas sobre capacetes no mundo**

De acordo com dados da OMS, entre 2010 e 2013 houve um aumento de quase 20% no número de países com legislação integral sobre capacetes que cobre todos os usuários de PTWs, todos os tipos de vias e todos os tipos de motor e que aplicam uma norma nacional técnica ou internacional sobre capacetes (37). O mapa abaixo mostra a cobertura da legislação sobre o uso de capacetes para motociclistas e das normas técnicas para capacetes por país/área, segundo dados de 2015.

Legislação e normas técnicas sobre capacetes para motociclistas por país/área

A legislação integral sobre capacetes para motociclistas geralmente envolve a aprovação de uma lei que obriga o uso de um capacete padrão por todos os motociclistas e em todas as vias, independentemente do tamanho do motor, com uma aplicação eficaz da lei, sanções e mecanismos regulamentares para a sua implementação plena (40). A tabela 3.2 apresenta uma lista de verificação para avaliar o alcance da legislação.
Tabela 3.2 Lista de verificação para avaliar o alcance da legislação sobre capacetes

<table>
<thead>
<tr>
<th>O conteúdo da legislação vigente aborda:</th>
<th>Sim</th>
<th>Não</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Uso de capacete</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inclui o uso obrigatório por todos os usuários (condutores e passageiros)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Determina que o uso de capacete inclui uma correia adequada para prender o capacete à cabeça e que o capacete deve cumprir as normas técnicas nacionais</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requer que todos os usuários usem capacete em todas as vias</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requer que usuários de todos os veículos motorizados de duas ou três rodas (com todos os tipos de motor) usem capacete</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Define uma idade mínima para o uso de uma motocicleta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Normas técnicas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Especifica normas de segurança reconhecidas, baseadas em normas internacionais</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inclui requisitos para a rotulagem do produto e aborda a falsificação do rótulo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Especifica requisitos para capacetes de crianças (por exemplo, idade ou altura) segundo a idade em que as crianças têm permissão para andar de motocicleta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Aplicação</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Especifica quem tem autoridade para aplicar a lei</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permite a aplicação primária: nenhuma outra infração de trânsito é necessária para que se possa deter o infrator e aplicar a legislação sobre capacetes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Sanções</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Especifica sanções financeiras</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inclui disposições para a apreensão da motocicleta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Outras medidas regulamentares para o uso de capacete</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estabelece sanções à venda de capacetes que não cumpram as normas técnicas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estabelece sanções para casos de falsificação do rótulo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estabelece requisitos para o uso de capacete por passageiros de PTWs do serviço público</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fonte: baseado em (41)
Legislação sobre o uso obrigatório de capacete

A legislação sobre o uso de capacetes é generalizada nos países de mais alta renda e é bem aceita, observando-se também um elevado cumprimento da lei (42). Em países que contêm com uma legislação integral, mas onde a aplicação é limitada, a eficácia da legislação não é evidente.

As evidências sobre o efeito da legislação podem ser vistas em estudos nos EUA onde as leis que exigiam o uso de capacete foram revogadas. A legislação, introduzida inicialmente em 1983, foi revogada nos estados de Arkansas e Texas em 1997. Quando as leis estavam vigentes, 97% dos usuários usavam capacete, mas em maio de 1998 foi observado que o uso de capacetes caía para 52% em Arkansas e 66% no Texas (43). Reduções semelhantes foram posteriormente observadas em outros estados que revogaram a sua legislação (44). As mesmas reduções foram observadas quando as leis deixaram de ser “universais” (aplicáveis a todos os usuários) e passaram a ser aplicadas somente a usuários de uma certa idade, com certos tipos de habilitação ou com um bom seguro médicos (44, 45). Em um estado, Louisianá, as leis foram modificadas muitas vezes nos últimos 30 a 40 anos. Uma revisão sistemática da literatura indicou um aumento de 12% a 23% na mortalidade nos estados que revogaram a legislação, em comparação com os estados que não o fizeram (18). Isto demonstra claramente a eficácia da legislação que exige o uso de capacete e, mais especificamente, a eficácia das leis que exigem que todos os usuários usem capacete.

Em muitos países as crianças andam de motocicleta. O uso de capacetes por crianças em motocicletas é obrigatório em muitas jurisdições de todo o mundo (46) – por exemplo, Vietnã, Malásia, EUA e Austrália. Porém, a pesquisa mostra que as taxas de uso de capacetes por crianças variam consideravelmente entre essas jurisdições (46-50), demonstrando que a mera exigência nem sempre é suficiente para assegurar altas taxas de utilização. Um estudo no Vietnã (47) observou que embora a legislação exigia o uso por crianças, não há nenhuma disposição na legislação que preveja sanções para crianças abaixo de 14 anos (ou seus pais), o que impossibilita a aplicação da lei. Porém, mesmo em países como a Malásia, onde a legislação é aplicável, observam-se taxas de uso relativamente baixas, possivelmente devido ao desconhecimento do público e às escassas atividades de aplicação da lei (46).

Além disso, nos EUA, onde vários estados revogaram leis sobre o uso de capacetes para adultos mas mantiveram as leis para crianças, estudos demonstraram que as taxas de traumatismo craniano entre usuários jovens são maiores nestes estados que naqueles onde as leis se aplicam a todos os usuários (51). Isto indica que as taxas de uso de capacetes por crianças são menores nos estados que permitem que os adultos dirigam sem capacete (52), destacando a importância de alterar a legislação, as medidas de aplicação da lei e a conscientização para aumentar as taxas de uso de capacete por crianças.

Outra barreira ao cumprimento da legislação talvez seja uso inconsistente de capacetes pela polícia. Tornar o uso do capacete obrigatório para os funcionários
Intervenções para abordar a segurança dos veículos motorizados de duas ou três rodas

públicos pode ser um bom ponto de partida para a aplicação da legislação.

A falta de capacetes de qualidade também é um problema em alguns países, o que reduz os possíveis benefícios dos programas para o uso de capacetes (53, 54). A baixa disponibilidade de capacetes de boa qualidade e de tamanho adequado para crianças é um problema particular (46). Isto destaca a importância das normas técnicas e sistemas para monitorar a qualidade de produtos como os capacetes.

Normas técnicas para capacetes

Para que um capacete seja eficaz, tem que ser de qualidade suficiente para fornecer a máxima proteção à cabeça (55) (a figura 3.1 ilustra os tipos de capacete). As normas técnicas para capacetes são uma medida regulamentar para assegurar um nível de segurança uniforme para os capacetes vendidos no mercado e usados pelos usuários.

Os motociclistas que usam capacetes aprovados têm um risco menor de traumatismo craniano e cerebral que os que não usam capacetes (34, 56-61). Também é importante fixar adequadamente o capacete para que seja plenamente eficaz. O apoio à legislação, informando e educando o público sobre a importância do uso adequado de capacetes aprovados, tem o potencial de criar uma norma social comum, o que comprovadamente aumenta o uso de capacetes (55) (ver Quadro 3.4). Embora haja relativamente poucos estudos sobre a eficácia dos capacetes especificamente em crianças, estudos sobre lesões em crianças que examinaram o resultado das lesões segundo o uso de capacete observaram menos casos de traumatismo craniano e/ou lesões menos graves em crianças que usavam capacetes (49, 50, 62, 63) (ver Quadro 3.5).

Figura 3.1 Tipos de capacete e seu nível de proteção

<table>
<thead>
<tr>
<th>Completo</th>
<th>Rosto desprotegido</th>
<th>Meia cabeça</th>
<th>Tropical</th>
</tr>
</thead>
</table>
As motocicletas são a base do transporte no Vietnã. Em 2015, mais de 44 milhões de motocicletas estavam registradas, representando 94% de todos os veículos registrados – um número que cresce em aproximadamente 8000 por dia (64).

As lesões no trânsito são uma das principais causas de morte e incapacidade no Vietnã. Em 2015, os dados oficiais notificaram 8435 mortes e 20.815 lesões graves nas vias; cerca de 75% dessas mortes ocorrem em motociclistas e passageiros (64).

O Vietnã tem uma legislação parcial sobre o uso de capacete desde 1995, mas, por uma série de razões, a implementação e a aplicação são limitadas. A primeira lei integral que tornou obrigatório o uso de capacetes no Vietnã entrou em vigor em 15 de dezembro de 2007, cobrindo todos os usuários e passageiros em todas as vias de todo o país. As sanções aumentaram em 10 vezes, e a polícia foi mobilizada para aplicar a lei (36).

Imediatamente, foram observados aumentos significativos no uso de capacetes em certas províncias. Em Da Nang por exemplo, o uso de capacete subiu de 27% a 99% (65). Nos 3 meses depois que a lei entrou em vigor, dados de vigilância de 20 hospitais urbanos e rurais observaram que o risco de traumatismos cranianos e mortes no trânsito caiu em 16% e 18%, respectivamente (66).

Liderança política, educação pública intensiva e a aplicação estrita da lei contribuíram para a implementação bem sucedida da legislação. Através do monitoramento contínuo da legislação, foram identificadas brechas, como o requisito de prender o capacete à cabeça com uma correia, o uso de capacetes por crianças e a qualidade dos capacetes.

Embora a legislação de 2007 determinasse claramente que todos os usuários e passageiros deveriam usar capacetes, era incompatível com a legislação existente sobre a aplicação da legislação de segurança viária com relação às crianças menores de 16 anos. Isto, combinado com informações incorretas sobre como o peso do capacete poderia aumentar o risco de lesão cervical em crianças pequenas, fez com que os pais limitassem o uso de capacetes por seus filhos. Para resolver a situação, uma consulta nacional de alto nível sobre o uso de capacetes por crianças foi convocada pelo Ministério do Transporte em 2009, o que contribuiu para atualizar a legislação nacional que exigia o uso de capacete por crianças a partir dos 6 anos de idade e tornou os adultos que as transportavam legalmente responsáveis por fazê-las usar o capacete (47). A aplicação específica da legislação segundo a idade representou um desafio, pois as crianças no Vietnã andam sem um documento que prove a sua idade, e os pais não são obrigados a levar uma cópia da certidão de nascimento. Este desafio fez com que a polícia adotasse práticas de aplicação baseadas no uso de uniforme escolar – crianças com uniforme eram consideradas de idade suficiente para a aplicação da lei. O último monitoramento do uso de capacetes no Vietnã encontrou taxas ao redor de 70% em 2015, em comparação com 46% em 2012 (67).

A aplicação da legislação nacional tem resultado em um aumento substancial no uso de capacetes por motociclistas no Vietnã. Porém, resta a questão do tipo de capacete utilizado por usuários e passageiros. Uma pesquisa na beira da estrada com dados de oito províncias (CAS Giang, CAS Ninh, Nam de ha, Ha Noi, Qui de Ho Minh City, Ninh Binh, Quanh Ninh e Vinh Phuc) trouxeram os capacetes usados pelos usuários por um capacete novo que seguia as normas técnicas nacionais (QCVN2). Outra avaliação de 280 novos capacetes com rótulo QCVN2 selecionados aleatoriamente da lista de capacetes aprovados pelo Ministério de Ciência e Tecnologia e comprados em fornecedores certificados constatou que mais de 58% destes capacetes não cumpriam os requisitos de proteção contra impactos (68). O cumprimento das normas de qualidade de capacetes é principalmente autorregulado pelas empresas de capacetes, sem um mecanismo nem um organismo independente que conduza a amostragem e testes aleatórios. Isto gera o potencial de que os fabricantes fornecem capacetes de alta qualidade para os testes e capacetes de qualidade inferior para o mercado. Como o rótulo QCVN2 atualmente não representa uma garantia de qualidade, as autoridades nacionais devem rever os termos da sua utilização pelos fabricantes para assegurar que seja usado somente nos capacetes que cumpram a norma técnica de qualidade nacional.

Na década passada, o Vietnã realizou avanços substanciais na implementação de intervenções baseadas em evidências científicas para abordar os principais fatores de risco para lesões relacionadas com o trânsito. Grande parte destas ações ainda não chegou a uma escala que tenha impacto sobre as taxas nacionais de mortalidade no trânsito, mas os líderes do país têm demonstrado o seu compromisso em salvar vidas e prevenir lesões no trânsito do Vietnã.
Reforço das sanções

A aplicação da lei pela polícia desempenha uma função importante ao fortalecer o cumprimento das regras de trânsito por todos os usuários. Uma das maneiras pelas quais os governos operacionalizam a aplicação da lei é mediante a definição de sanções máximas para diversas infrações de trânsito. Uma revisão sistemática da literatura (18) identificou evidências de dois estudos que indicaram uma redução pequena, mas significativa nos incidentes associada a maiores sanções financeiras, bem como à criminalização da direção sob o efeito de álcool e do excesso de velocidade. Um estudo longitudinal nos EUA (1980-1997) constatou que nos estados onde a habilitação do usuário é revogada em casos de direção sob o efeito de álcool foi observada uma redução das mortes relacionadas com motocicletas.

Criminalização das infrações

A aplicação de leis que criminalizam diferentes comportamentos relacionados com o excesso de velocidade e o consumo de álcool é uma medida consistentemente eficaz na redução das mortes no trânsito (70). Há poucas evidências disponíveis sobre a questão mais ampla da criminalização de infrações (não relacionadas com o álcool) e seu efeito sobre a redução das lesões relacionadas com motocicletas. Para criar conformidade e adesão às regras de trânsito pelos motociclistas, a publicidade sustentada na mídia e campanhas de conscientização são necessárias para acompanhar as atividades de aplicação da lei (71).
Sistemas de pontos na carteira de habilitação

Um sistema de pontos na carteira de habilitação é um sistema de sanções no qual um certo número de pontos é somado à habilitação do condutor por cada infração de trânsito, dependendo da gravidade da infração (ver Quadro 3.6 para um exemplo de um sistema como este em Ontário, no Canadá). Em alguns ambientes, as regras aplicadas para a aplicação destas sanções podem ser adaptadas, dependendo do fato de se tratar de um condutor iniciante ou experiente, com habilitação definitiva. Um estudo realizado com motociclistas em vias urbanas na Espanha demostrou que um sistema deste tipo é capaz de reduzir a ocorrência de incidentes (72).

QUADRO 3.6: Sistema de pontos na carteira de habilitação em Ontário, no Canadá

Em Ontário, os condutores começam com zero pontos na carteira de habilitação e ganham pontos ao cometerem infrações de trânsito (enquanto que, na maioria dos países, os condutores começam com cerca de 12 pontos e perdem a habilitação ao perderem todos os 12 pontos).

Os pontos permanecem na carteira de habilitação por 2 anos desde a data da infração. Se somarem muitos pontos, os condutores podem perder a habilitação para dirigir motocicletas.

O número de pontos somados à habilitação depende da infração. Por exemplo:

- 7 pontos se um usuário não permanecer na cena do incidente ou não parar quando ordenado por um policial;
- 6 pontos se for condenado por condução descuidada, exceder a velocidade máxima em mais de 50 km/h ou não parar para um ônibus escolar;
- 4 pontos se exceder o limite de velocidade em 30 a 49 km/h ou se seguir outro veículo muito de perto;
- 3 pontos se dirigir enquanto segura um dispositivo de comunicação ou entretenimento, se exceder a velocidade máxima em 16 a 29 km/h etc.;
- 2 pontos se fizer uma conversão proibida à direita ou à esquerda, não obedecer sinais ou não parar na faixa para pedestres etc.

As consequências de ganhar pontos dependem de quantos pontos um condutor já tem em sua habilitação. O número de pontos varia entre usuários iniciantes ou que já têm uma habilitação definitiva.

Sanções por pontos na carteira de habilitação: condutores com habilitação definitiva

2 a 8 pontos: O usuário recebe uma carta de advertência.

9 a 14 pontos: A habilitação pode ser suspensa a menos que o usuário compareça a uma entrevista para discutir e dar razões pelas quais a habilitação não deve ser suspensa. Se não comparecer, a habilitação pode ser suspensa.

15 pontos ou mais: A habilitação é suspensa por 60 dias. Se o usuário não entregar a habilitação, pode perdê-la por até 2 anos.

Sanções por pontos na carteira de habilitação: condutores iniciantes

2 a 5 pontos: O usuário recebe uma carta de advertência.

6 a 8 pontos: A habilitação pode ser suspensa a menos que o usuário compareça a uma entrevista para discutir e dar razões pelas quais a habilitação não deve ser suspensa.

9 pontos ou mais: A habilitação é suspensa por 30 dias. Se o usuário não entregar a habilitação, pode perdê-la por até 2 anos.

Fonte: baseado em (73)
Uso de roupa refletiva e protetora

O uso de roupa refletiva e protetora como jaquetas, calças, botas e luvas é uma intervenção promissora para a prevenção de lesões relacionadas com PTWs. Foi demonstrado consistentemente que o uso de roupa refletiva melhora a visibilidade dos usuários e passageiros por aumentar o contraste entre o motociclista e o ambiente ao redor (74, 75), contribuindo para reduzir o risco de incidentes com motocicletas e lesões graves ou mortes em quase um terço (76). Para a implementação efetiva, é necessária uma abordagem multifacetada que inclua leis de segurança complementares e campanhas educacionais centradas em aumentar a conscientização sobre a visibilidade dos PTWs (29, 77). As regulamentações que exigem o uso de tais roupas e a aplicação da lei são igualmente importantes para destacar a importância desta medida.

O uso de roupa protetora reduz a probabilidade de lesão, hospitalização e incapacidade. A roupa é concebida especificamente para proteger contra escoriações e impactos. A roupa protetora é uma medida viável para proteger os motociclistas contra escoriações e fraturas – os tipos mais comuns de lesões relacionadas com PTWs em incidentes não fatais (78). A maioria das lesões comuns relacionadas com PTWs nos braços e pernas pode ser reduzida ou prevenida pela roupa protetora (79, 80), que comprovadamente reduz as lesões de tecidos moles, a probabilidade de hospitalização e a probabilidade de incapacidade 2 meses após a ocorrência do incidente (81, 82). Apesar da sua eficácia documentada, seu uso é limitado em países de renda baixa e média (82). O uso em países de alta renda também varia consideravelmente entre diferentes países e dentro dos países, variando de 50 a 81% (82, 84). A promoção e aplicação da lei é fundamental para a boa implementação desta intervenção.

Registro obrigatório e habilitação de condutores de PTWs e veículos

As intervenções gerais de segurança viária dirigidas a todos os usuários formam a base da boa administração da segurança viária nos países de alta renda (42). Estas incluem o registro e sistemas de habilitação, além da aplicação estrita – com sanções – das leis de segurança viária. Em alguns países de renda baixa e média, a maioria dos PTWs não é registrada, e a pesquisa mostra que os usuários sem habilitação tendem a se envolver em mais incidentes (39). Em outras classes de veículos motorizados, como automóveis e ônibus, está bem estabelecido que os defeitos mecânicos podem contribuir para a ocorrência de incidentes (85). Também foi demonstrado que modificações ilegais em PTWs comprometem o desempenho dos veículos. Em países de renda baixa e média, muitas motocicletas são transformadas em triciclos, para transportar passageiros e/ou produtos (86). Embora pareça haver poucos dados sobre o envolvimento em incidentes, os estudos que investigaram o desempenho dos veículos modificados revelam que não há nenhuma regulamentação destes veículos através de um processo de registro, e muitos dos usuários desses veículos não têm habilitação (86). Um estudo dos incidentes com veículos de três rodas no Sri Lanka, por exemplo, mostrou que as modificações feitas no guiadão dos veículos aumentam o ângulo de viragem para o condutor – um fator contribuinte em quase 30% dos incidentes na amostra do estudo (87).
Sistema graduado de habilitação

Um sistema graduado de habilitação é um mecanismo regulamentar que limita a potência e o tamanho do motor dos PTWs de condutores jovens e iniciantes, para que possam adquirir experiência e habilidades com menos riscos. Há evidências documentadas de que a implementação de um sistema graduado de habilitação conduz a uma redução significativa (de até 22%) na hospitalização por incidentes com motocicletas (88). Embora tais sistemas sejam comuns em países de alta renda, o tipo de restrição imposta pela regulamentação varia consideravelmente entre diferentes países de alta renda. Essas variações incluem restrições no tamanho do motor, na idade dos usuários, na permissão de levar passageiros e na condução durante a noite. Alguns sistemas limitam o teor máximo de álcool no sangue para usuários menos experientes ou até certa idade, e outros incluem provas de condução para a obtenção da habilitação, cursos de treinamento e uma duração mais longa da habilitação temporária para iniciantes (7, 89).

Treinamento

Foi demonstrado que a introdução de treinamento obrigatório e de uma prova de condução para obter a habilitação é uma intervenção eficaz na segurança dos PTWs, embora os benefícios do treinamento pós-habilitação pareçam ser limitados (90).

Prova de condução obrigatória para a obtenção da habilitação de motociclistas

Foi demonstrado que o treinamento obrigatório e uma prova de condução para obter uma habilitação contribuem para uma redução tanto do risco de incidentes como da mortalidade (89). Esta intervenção foi implementada através de normas sobre a operação e habilitação de PTWs (34, 89, 91). A eficácia desta intervenção está bem documentada em países de alta renda, mas a sua eficácia em países de renda baixa e média ainda não foi validada. Com base nas evidências de países de alta renda, o Grupo de Trabalho ITF/OCDE sobre Segurança de Veículos Motorizados de Duas Rodas tem feito recomendações (resumidas no Quadro 3.7) a seus membros sobre o treinamento (7).

QUADRO 3.7: Recomendações do Grupo de Trabalho ITF/OCDE sobre treinamento para PTWs

O Grupo de Trabalho ITF/OCDE sobre Segurança de Veículos Motorizados de Duas Rodas fez as seguintes recomendações em 2014:

- As autoridades nacionais (ou provinciais/estaduais) devem considerar que o uso de um PTW requer um certo nível de maturidade pessoal, tal como para qualquer outro veículo.
- O acesso aos PTWs deve ser gradual, com um sistema de habilitação que vise controlar os riscos para os usuários jovens e iniciantes enquanto adquirem experiência.
- A finalidade do sistema de habilitação deve ser assegurar que os condutores, independentemente da idade, possuam as habilidades, conhecimentos e atitudes corretas para dirigir com a maior segurança possível, sem restringir excessivamente a mobilidade.

Fonte: baseado em (7)
Intervenções para abordar a segurança dos veículos motorizados de duas ou três rodas

Treinamento pós-habilitação

Não há evidências confiáveis de que o treinamento pós-habilitação reduz o risco de incidentes. Uma revisão não encontrou evidências confiáveis dos benefícios do treinamento sobre os motociclistas (pré- ou pós-habilitação) (92), e um grande estudo posterior sobre um programa de treinamento prático pós-habilitação não mostrou nenhuma redução na ocorrência de incidentes, mas sim um aumento da confiança dos usuários e um aumento autodeclarado no excesso de velocidade (90). Portanto, é melhor realizar programas de treinamento obrigatórios pré-habilitação, a fim de ensinar as habilidades básicas para a condução de PTWs.

Atenção após a ocorrência de incidentes

A atenção rápida após a ocorrência de incidentes minimiza o risco de lesões graves e morte (93). Embora tenha sido demonstrado que a boa atenção pré-hospitalar – como um rápido tempo de resposta e a aplicação de protocolos de tratamento uniformes – seja eficaz em minimizar o risco de lesões graves e morte associadas ao trânsito, duas intervenções específicas para PTWs são promissoras: a remoção do capacete no local do incidente e a colocação de um colar cervical na pessoa ferida. Foi demonstrado que ambas as intervenções, se realizadas adequadamente por um profissional treinado em atenção pré-hospitalar, minimizam a gravidade da lesão e a incapacidade a longo prazo. A remoção do capacete por profissionais treinados é importante quando é evidente que há vômito ou obstrução das vias respiratórias (94). A aplicação de um colar cervical para proteger a medula espinhal da vítima na cena do incidente é igualmente prioritária. Os tipos de lesões sofridas por motociclistas com capacetes que cobrem inteiramente o rosto, bem preso à cabeça por uma correia sob o queixo, e certos tipos de roupa protetora sugerem que a atenção às vias respiratórias, à circulação e à medula espinhal das vítimas de incidentes com motocicletas tem aspectos únicos e que o treinamento profissional é importante para poder avaliar as ameaças à respiração em contraposição ao risco de lesão espinhal (94, 95). Mais informações sobre as intervenções de atenção não específicas para PTWs após a ocorrência de incidentes são apresentadas na seção 3.2.3.

3.1.2 Intervenções para a segurança dos PTWs com evidências insuficientes ou fracas

Além das intervenções eficazes e promissoras descritas acima, há outras intervenções para as quais a base de evidências é insuficiente para recomendar a implementação generalizada. Estas intervenções tendem a ter alcance limitado e a sua aplicabilidade não foi validada para além do local onde foram testadas. Frequentemente, a avaliação de tais intervenções não chega a uma conclusão firme sobre a sua capacidade de reduzir as mortes e incidentes ou de produzir a mudança de comportamento desejada. Isto se deve a uma série de razões, como tempo insuficiente entre a intervenção e o impacto esperado sobre as lesões, baixo número de casos (com baixa significância estatística) ou um pequeno número de estudos. Embora tais
intervenções não possam ser promovidas como eficazes ou promissoras, podem ser consideradas para a adaptação local, sendo necessárias outras avaliações para confirmar a sua eficácia e definir as áreas que devem ser modificadas.

A lista de intervenções para lesões relacionadas com PTWs com evidências insuficientes ou fracas inclui os seguintes elementos:

- Melhorar a condição das superfícies das vias.
- Modificar a composição dos materiais de construção das barreiras de segurança.
- Projetar PTWs com melhor estabilidade.
- Airbags para motocicletas.
- Sistema de transportes inteligentes.
- Instalação ou uso de luzes de freio.
- Regulamentação e habilitação para PTWs.
- Uso de roupas que protegem contra altas temperaturas.
- Limite de idade (ou altura) para crianças como passageiros ou usuários de PTWs.
- Inspeção periódica de PTWs para verificar defeitos mecânicos.
- Definição de uma altura mínima para passageiros.
- Menor tamanho de motor para condutores iniciantes.
- Treinamento pós-habilitação e para condutores que ficaram sem conduzir por algum tempo.
- Remover o capacete/instalar colar cervical no local do incidente.

A adoção destas estratégias (exceto de forma experimental) para reduzir as lesões relacionadas com PTWs não é recomendada até que haja evidências robustas sobre sua eficácia.

3.2 Intervenções gerais de segurança viária que podem melhorar a segurança dos PTWs

As intervenções gerais de segurança viária dirigidas a todos os usuários têm o potencial de melhorar a segurança dos PTWs. Um resumo das intervenções gerais de segurança viária, não específicas para PTWs, é apresentado na Tabela 3.3 (ver seção 3.1 para a definição de eficácia).

A seguir, é apresentada uma descrição breve de cada uma das intervenções, com exemplos de como alguns países implementaram essas abordagens. As intervenções são divididas nas categorias “vias mais seguras”, “usuários mais seguros” e “atenção após a ocorrência de incidentes” da Década de Ação para a Segurança Viária.
3.2.1 Intervenções relacionadas com vias mais seguras

Expandir e melhorar os sistemas de transporte público

A criação de sistemas de transporte público sustentáveis e com boa manutenção é cada vez mais vista como um aspecto importante para tornar a mobilidade geral mais segura, com o benefício adicional de reduzir a congestão do trânsito, particularmente nas áreas urbanas onde há cada vez mais trânsito (42). A expansão do transporte público também contribui para melhorar a saúde, por encorajar a atividade física e reduzir as emissões de gases do efeito estufa.

O maior uso de transporte público está associado a taxas mais baixas de letalidade no trânsito (96-98). Porém, em muitos países de renda baixa e média, embora o transporte público seja frequentemente o único meio de transporte para a maioria das pessoas, pode ser inseguro, em particular quando operado por entidades privadas. Um sistema eficaz de transporte público deve empregar uma abordagem abrangente que assegure o transporte seguro, acessível, confiável e de baixo custo para todos.

Tabela 3.3 Medidas gerais de segurança viária e intervenções específicas que podem melhorar a segurança dos PTWs

<table>
<thead>
<tr>
<th>Medidas principais</th>
<th>Intervenções específicas</th>
<th>Eficácia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimizar a exposição a cenários de alto risco</td>
<td>Expandir os sistemas de transporte público</td>
<td>Comprovada</td>
</tr>
<tr>
<td>Modificar o comportamento dos usuários de PTWs</td>
<td>Estabelecer e controlar os limites de velocidade</td>
<td>Promissora</td>
</tr>
<tr>
<td></td>
<td>Estabelecer e aplicar a legislação sobre direção sob o efeito de álcool (tese aleatório do teor de álcool na respiração – “bafômetro”)</td>
<td>Evidências insuficientes</td>
</tr>
<tr>
<td></td>
<td>Proibição do uso de telefones celulares ao dirigir</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marketing social</td>
<td></td>
</tr>
<tr>
<td>Melhorar a atenção médica e os tempos de resposta após a ocorrência de incidentes</td>
<td>Introdução de protocolos de tratamento uniformes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tempo rápido de resposta</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oferta de reabilitação precoce</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Treinamento em primeiros socorros</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seguro de saúde obrigatório</td>
<td></td>
</tr>
</tbody>
</table>
3.2.2 Intervenções relacionadas com usuários mais seguros

Gestão da velocidade

Como ilustrado no Módulo 1, o excesso de velocidade é um importante fator de risco para incidentes com PTWs e para lesões graves. Por isso, os esforços para reduzir a velocidade dos usuários de PTWs, bem como de outros usuários, tanto em vias urbanas como rurais, devem contribuir para resultados positivos (99). Além de reduzir a força do impacto, a menor velocidade permite que os condutores de outros veículos tenham mais tempo para ver o PTW, reduzir a distância de frenagem e pararem o veículo em reação a qualquer circunstância imprevista. Além disso, aumenta capacidade dos usuários de PTWs de julgar a velocidade dos outros veículos e lhes dá tempo para reagir no caso de uma colisão iminente.

A eficácia da legislação para redução da velocidade e a sua aplicação sobre a redução de incidentes e a gravidade das lesões está bem documentada (99, 100). O estabelecimento de limites de velocidade está diretamente ligado ao desenho das vias. Também foi demonstrado que o estabelecimento de limites de velocidade gerais segundo o tipo de via e o controle dos limites pela polícia reduzem as mortes e lesões relacionadas com PTWs (99). O efeito da menor velocidade sobre o número de incidentes com PTWs foi demonstrado em estudos que avaliaram o efeito da congestão nas áreas urbanas. Constatou-se que a congestão pode reduzir a velocidade em todos os veículos e, subsequentemente, reduzir o nível de gravidade dos incidentes com PTWs (101). Um estudo no Reino Unido também constatou que a congestão do trânsito, dependendo do tipo de via, pode estar associada a uma redução no número de incidentes com PTWs. Um estudo (102) observou menos incidentes com PTWs em vias periurbanas e urbanas congestionadas, enquanto que nas autoestradas, os incidentes com PTWs aumentaram em momentos de maior congestão.

Estabelecimento e aplicação da legislação sobre direção sob o efeito de álcool (teste aleatório do teor de álcool na respiração – “bafômetro”)

A associação entre o consumo de álcool e a deterioração da condução está bem estabelecida. Foi demonstrado que o estabelecimento e a aplicação da legislação sobre os limites máximos de álcool no sangue pelo teste aleatório do teor de álcool na respiração é eficaz em reduzir os incidentes relacionados com o álcool (103). As intervenções para reduzir os casos de condução sob o efeito de álcool voltadas a todos os usuários têm o potencial de beneficiar os usuários de PTWs. Alguns países de alta renda estabelecem limites inferiores (verificados no sangue, na respiração ou na urina) para usuários mais novos como parte de um sistema graduado de habilitação. Apenas alguns países nas Américas e alguns outros países de renda baixa e média seguem a recomendação da OMS de estabelecer limites inferiores para condutores mais jovens ou iniciantes (42). Em geral, os limites são baseados em estudos com carros, mas alguns estudos indicam que é necessário um limiar mais baixo para evitar erros de condução relacionados com o álcool em motociclistas (104-106). Apesar da existência de evidências sólidas, menos de 50% dos países de todo o mundo têm uma legislação adequada sobre o tema e a aplicam de forma estrita (42). Só a metade dos países do mundo utiliza o limite recomendado de 0,05 g/dl ou inferior.
Campanhas de segurança viária e marketing social

Campanhas de segurança viária são frequentemente usadas para influenciar o comportamento dos usuários, mas só são eficazes quando usadas em conjunto com a legislação e a sua aplicação (107-109). Porém, a promoção de segurança para a prevenção de lesões relacionadas com o trânsito está mudando rapidamente.

Em vez de difundir as mensagens em comunicações unidirecionais, de cima para baixo, a promoção da segurança concentra-se agora em comunicar as mensagens de acordo com os conhecimentos, necessidades e percepções do público-alvo, considerando também o contexto no qual serão transmitidas. Isto inclui uma ênfase muito mais forte no uso das mídias sociais e da comunicação interativa (109). Embora haja poucos ou nenhum estudo sobre campanhas específicas para motocicletas, parece provável que campanhas continuadas de apoio ao cumprimento da legislação repercutam positivamente na segurança dos PTWs.

Como os programas de marketing social devem ter um público-alvo específico, o planejamento envolve a pesquisa aprofundada sobre o público-alvo e a avaliação continuada para informar e modificar o programa de acordo com as necessidades. Como tal, a consulta, a pesquisa e a avaliação são partes fundamentais de um programa de marketing social.

3.2.3 Melhoria da atenção após a ocorrência de incidentes

A prevenção de incidentes no trânsito é o objetivo de qualquer intervenção de segurança viária. Contudo, é essencial oferecer atenção de emergência e atenção médica de acompanhamento apropriadas após a ocorrência de incidentes para mitigar as consequências. A atenção oportuna e apropriada após a ocorrência de incidentes pode aumentar a probabilidade de sobrevivência, reduzir a ocorrência de complicações, melhorar os resultados funcionais e reduzir o impacto financeiro da atenção médica a longo prazo e a perda de produtividade. A atenção após a ocorrência de incidentes envolve uma sequência de ações destinadas a reduzir o impacto das lesões (ver Quadro 3.8 para a cadeia de atenção traumatológica após a ocorrência de incidentes, desde a cena do incidente até a reabilitação).

Introdução de protocolos de tratamento uniformes

Melhorias na atenção geral após a ocorrência de incidentes levam a melhores resultados de saúde. Foi demonstrado que uma abordagem sistemática para o tratamento precoce das vítimas reduz tanto a morbididade como a mortalidade (110). A atenção traumatológica eficaz requer um bom sistema pré-hospitalar e hospitalar para a prestação de cuidados de emergência, com capacidades adequadas para a atenção de vítimas de incidentes (111).
QUADRO 3.8: Cadeia de atenção traumatológica após a ocorrência de incidentes

Primeiros socorros prestados por transeuntes

Acesso a serviços médicos de urgência

Atenção pré-hospitalar na beira da estrada

Transporte apropriado ao hospital

Reanimação precoce

Diagnóstico rápido

Intervenção de especialistas

Intervenção de médicos de urgência

Reabilitação

Acesso a serviços médicos de urgência

Fonte: adaptado de (112)

Atenção pré-hospitalar

A atenção pré-hospitalar consiste na atenção médica e no transporte de pacientes feridos antes da chegada a uma unidade de saúde, sendo frequentemente denominada “serviço de atendimento médico de urgência” (SAMU). Na maioria dos países de renda baixa e média, isto também inclui os sistemas informais de transporte das pessoas para receber atenção (por exemplo, por transeuntes, taxistas ou outros).

Atenção hospitalar

A atenção hospitalar inclui a atenção aguda prestada até uma ou duas horas após a chegada do paciente, típicamente em uma enfermaria para vítimas ou um serviço de emergência. Também inclui a atenção definitiva prestada em outros locais do hospital, como centros cirúrgicos, unidades de terapia intensiva e enfermarias gerais.

Reabilitação

A reabilitação implica a otimização da função física e mental da pessoa ferida e um retorno a uma vida significativa o mais semelhante possível ao estado anterior ao incidente. Isto pode envolver a atenção prestada em unidades de saúde (às vezes na mesma unidade que presta a atenção aguda de emergência). Também pode envolver terapia no ambiente domiciliar e o trabalho para maximizar a recuperação e a retomada das funções sociais.

Fonte: adaptado de (112)
Alerta de emergência – resposta rápida

Maneiras rápidas e precisas de ativar a atenção de emergência (como números de acesso universais) associadas à acessibilidade a serviços de emergência contribuem para reduzir o tempo de resposta (o tempo entre o incidente e a prestação da atenção de emergência). Um tempo de resposta mais longo envolve uma maior probabilidade de morte no caso de incidentes graves. Há vários estudos em países de alta renda que demonstram os benefícios da resposta rápida, da atenção apropriada no local do incidente e do início precoce do tratamento médico (113). Alguns estudos indicam que uma redução de 10 minutos no tempo de resposta da atenção médica resulta em uma diminuição média de um terço na probabilidade de morte, tanto em autoestradas como em vias convencionais (114). Em muitos países de alta renda há serviços de saúde bem estabelecidos com capacidade para prestar cuidados pré-hospitalares e de emergência oportunos e apropriados para as vítimas. Porém, em países de renda baixa e média, a maioria das mortes por lesões relacionadas com o trânsito ocorre antes do paciente chegar a um hospital. Na ausência de um sistema formal de emergência e atenção traumatológica, o treinamento de outros usuários (particularmente condutores de táxis e caminhões) na prestação de primeiros socorros em países de renda baixa e média tem demonstrado resultados benéficos (42). Iniciativas bem-planejadas que melhoram o papel dos cidadãos (que muitas vezes precisam suprir as deficiências do sistema, transportando vítimas a um hospital) beneficiariam todos os usuários, inclusive os de PTWs (115).

Reabilitação precoce

As lesões no trânsito, inclusive as que envolvem PTWs, são uma das principais causas de incapacidades resultantes de lesões, principalmente entre jovens (116-118). Os motociclistas frequentemente continuam a apresentar alguma incapacidade física um ano após o incidente (119). As partes do corpo mais afetadas por lesões que resultam em incapacidades em motociclistas são os membros inferiores (120–122), os membros superiores (120) e a cabeça (123). Lesões da medula espinhal são menos comuns em motociclistas, mas são uma das grandes causas de deficiência e incapacidade grave (6). A reabilitação é um “conjunto de medidas para ajudar pessoas que sofrerem ou podem sofrer incapacidades a manterem a melhor funcionalidade possível na interação com seu ambiente” (124).

Foi demonstrado que programas de reabilitação precoce levam a melhores resultados em muitos ambientes (125-131). Por exemplo, em vítimas de lesão cerebral traumática muito grave, foi demonstrado que a implementação de programas de reabilitação precoce – centralizada, intensiva e multidisciplinar por natureza – prestada em centros especializados melhora tanto a funcionalidade como a Escala de Coma de Glasgow (132) (ver Quadro 3.9 sobre componentes de intervenções eficazes de reabilitação precoce).
A reabilitação precoce deve começar nas unidades médicas de atenção aguda imediatamente depois que a vítima foi estabilizada, e enquanto ainda está no hospital.

O processo de reabilitação inclui a identificação dos problemas e necessidades do paciente, a relação entre os problemas e os fatores relevantes sobre a pessoa e o seu ambiente, a definição dos objetivos de reabilitação, o planejamento e implementação das medidas e a avaliação dos efeitos.

Objetivos da reabilitação:
- Prevenir a perda de função
- Reduzir a taxa de perda de função
- Melhorar ou restaurar a função
- Compensar a função perdida
- Manter a função atual

Resultados da reabilitação:
- Menor tempo de internação hospitalar
- Maior independência
- Menor carga de atenção médica
- Retorno a função/ocupação relevante em termos de idade, sexo e contexto (lar, trabalho, escola)
- Reintegração social e ocupacional

Principais tipos de lesões que levam a incapacidades:
- Lesões de membros superiores e inferiores
- Lesão cerebral traumática

Evidências:
- O início precoce da reabilitação está associado à redução dos tempos de coma e da internação hospitalar, melhores níveis cognitivos no momento da alta hospitalar e maior probabilidade de retorno para casa após a alta.

Lista de intervenções para lesão cerebral traumática:
- Programa centralizado e intensivo sub-agudo de reabilitação executado em centros especializados
- Programa de reabilitação formal e precoce durante a internação aguda
- Programa formal (média de 2 dias para o início da terapia) com um programa não formal (média de 23 dias para o início da terapia)
- Início precoce de um programa de reabilitação aguda (menos de 35 dias após a lesão) em comparação com o início tardio (mais de 35 dias após a lesão)
- Tempo:
- Consultas precoces de fisioterapia e reabilitação (menos de 2 dias após a internação hospitalar)

QUADRO 3.9: A reabilitação precoce como uma intervenção

Fontes: adaptado de (123, 126, 127, 131).
Resumo

O conteúdo deste módulo pode ser resumido da seguinte forma:

- Existem intervenções comprovadamente eficazes ou promissoras que são específicas para melhorar a segurança dos PTWs, bem como intervenções gerais eficazes para outros problemas de segurança viária que também aumentam a segurança dos PTWs.
- A implementação de intervenções comprovadas e promissoras deve adotar uma abordagem abrangente que envolva intervenções relacionadas com os usuários, os veículos e o ambiente, usando a engenharia, a aplicação da lei e a educação de maneira integrada.
- A abordagem Safe System serve como um referencial para o planejamento e a implementação de intervenções eficazes e promissoras.
- As intervenções comprovadamente eficazes e promissoras são as seguintes:
 - Gestão da segurança viária: um forte papel governamental no estabelecimento e aplicação da lei, na habilitação de condutores e no registro de veículos.
 - Vias e mobilidade mais seguras: separação dos PTWs do restante do trânsito, principalmente nos casos em que pelo menos 20-30% dos usuários das vias públicas são PTWs.
 - Veículos mais seguros: sistemas avançados de freios, como os freios ABS, e resolução dos defeitos mecânicos em todos os PTWs.
 - Usuários mais seguros: estabelecimento e aplicação da legislação relativa a condução sob o efeito de álcool, excesso de velocidade, capacetes e roupas protetoras, instituição de um sistema graduado de habilitação, aumentar a visibilidade dos PTWs.
 - Resposta após a ocorrência de incidentes: introdução de protocolos de tratamento uniformes e mecanismos rápidos e precisos para a ativação precoce dos sistemas de atenção de emergência.

Referências

2. GRADE Working Group. Grading evidence and formulating recommendations. BMJ. 2004;328:1490. http://dx.doi.org/10.1136/bmj.328.7454.1490

Intervenções para abordar a segurança dos veículos motorizados de duas ou três rodas

82. Erdogan MO et al. Roles of motorcycle type and protective clothing in motorcycle crash injuries. Ex Rutgers/ Medicine International. 2013;7620205.

100. Chisholm D, Naci H, Hyder AA, Tran NT, Peden M. Cost effectiveness of strategies to combat road traffic injuries in sub-Saharan Africa and South East Asia: mathematical modelling study. BMJ. 2012;344 mar02 1:e612. http://dx.doi.org/10.1136/bmj.e612

Implementação e avaliação de intervenções de segurança para PTWs
Implementação e avaliação de intervenções de segurança para PTWs

4.1 Definição dos resultados desejados .. 85
4.2 Priorizar as intervenções baseadas em evidências científicas .. 86
4.3 Elaboração de um plano de avaliação e monitoramento 88
 4.3.1 O que monitorar e avaliar .. 89
 4.3.2 Fontes de dados para monitoramento e avaliação 89
4.4 Desenvolvimento e execução de um plano de ação 90
 4.4.1 Principais componentes de um plano de ação para a segurança dos PTWs .. 90
 4.4.2 Mobilizar e manter o apoio .. 91
Resumo .. 93
Referências ... 93
As intervenções promissoras discutidas no Módulo 3 podem melhorar a segurança dos PTWs e ajudar a salvar vidas se forem implementadas de forma consistente. Um programa de implementação eficaz requer uma abordagem estratégica, desde o planejamento até a execução. Cada passo deve ser baseado em evidências, e a melhoria de qualidade contínua é uma parte fundamental do planejamento dos programas. O objetivo deste módulo é apresentar o processo de implementação de intervenções de segurança para PTWs (incluindo a avaliação). A implementação estratégica (como apresentada neste módulo) abrange quatro passos (1):

- Definir os resultados desejados
- Priorizar as intervenções baseadas em evidências para definir os programas
- Elaborar um plano de avaliação e monitoramento
- Elaborar e executar um plano de ação

4.1 Definição dos resultados desejados

O primeiro passo da implementação de qualquer programa é definir os resultados desejados usando objetivos e metas. Os objetivos geralmente são visionários, não especificando nem um prazo nem uma meta quantificada – mas indicam uma intenção clara. As metas, por outro lado, descrevem os resultados esperados através da implementação de um programa. Dados de referência, incluindo dados sobre a carga das lesões (por exemplo, a incidência de lesões, mortes e medidas socioeconômicas relacionadas com PTWs) e a prevalência de fatores de risco (como o nível de exposição) obtidos durante a avaliação situacional são, portanto, necessários para quantificar as metas.

As metas devem:

- ser específicas, quantificáveis, realizáveis, relevantes e limitadas no tempo;
- basear-se nas evidências disponíveis, derivadas da avaliação situacional e da literatura relevante;
- incluir metas de redução das mortes e lesões, bem como de reduções dos riscos que podem resultar da melhoria das condições para os PTWs (também devem ser consideradas metas ligadas a mudanças comportamentais);
- ser de curto, médio e longo prazo (2).

A tabela 4.1 apresenta um conjunto de metas gerais de segurança viária para PTWs que foram extraídas de documentos de estratégias nacionais de segurança viária existentes.
4.2 Priorizar as intervenções baseadas em evidências científicas

Como descrito no Módulo 1, todos os tipos de lesões relacionadas com o trânsito, inclusive entre os usuários ou passageiros de PTWs, são o resultado de circunstâncias relacionadas com os usuários, os veículos, o ambiente viário, a infraestrutura e outras condições socioeconômicas. A priorização requer a avaliação de cada intervenção em termos da capacidade de implementação e da aceitabilidade entre os responsáveis pela implementação, bem como o público-alvo. As análises de políticas e dos grupos de interesse descritas no Módulo 2 visam gerar tais informações para ajudar a avaliar o ambiente geral das políticas viárias e o provável nível de apoio às diversas intervenções consideradas.

QUADRO 4.1: **A Estratégia de Segurança para Motocicletas de New South Wales 2012–2021, Austrália**

Em New South Wales (NSW), as motocicletas são usadas para o percurso de casa para o trabalho e para recreação. Nos últimos anos, o uso de motocicletas tem aumentado no estado. De 2006 a 2011, o número de registros de motocicletas aumentou 41% (em comparação com 8% para carros), e o número de habilitações de motociclistas aumentou 17%.

A taxa de mortes entre motociclistas é 20 vezes maior que entre condutores de automóveis. Como tal, o uso de motocicletas é uma alternativa de mais alto risco que outros meios de transporte. Como o número de motocicletas tem aumentado, o número de incidentes fatais também está aumentando. A situação em New South Wales é representativa do que ocorre em outras partes da Austrália.

Num esforço para abordar esta questão emergente de saúde pública, o Ministério do Transporte e dos Portos (responsável pela segurança viária em New South Wales) introduziu a Estratégia de Segurança para Motocicletas de New South Wales 2012-2021.

Continua...
Definição dos resultados desejados
A Estratégia de Segurança para Motocicletas formula um plano integral com uma variedade de ações para melhorar a segurança de todos os usuários. O plano é baseado na abordagem Safe System, que orienta as políticas de segurança viária em todas as jurisdições da Austrália. A abordagem Safe System abrange os seguintes elementos: usuários seguros, veículos seguros, vias seguras, beiras de estrada seguras e velocidades seguras.

A Estratégia de Segurança para Motocicletas é um dos componentes da Estratégia de Segurança Viária de New South Wales 2012-2021, voltada a todos os usuários (incluindo usuários de motocicletas), e promove avanços numa série de resultados. O objetivo geral da Estratégia de Segurança Viária é uma redução de 30% nas mortes e lesões graves no trânsito até o final de 2021.

Iniciativas de segurança
A Estratégia de Segurança para Motocicletas envolve um conjunto de iniciativas que correspondem a cada parte do referencial Safe System. Cada conjunto de iniciativas estabelece certas ações. Dentre estas, algumas são para implementação imediata; algumas devem ser mais investigadas para assegurar o alinhamento com os princípios das boas práticas antes da implementação; e algumas devem ser submetidas a monitoramento contínuo durante e após o período de implementação da estratégia. Um exemplo de iniciativas para o elemento “vias seguras” da abordagem Safe System é apresentado a seguir.

Iniciativas de segurança para vias seguras
1. Pesquisar abordagens de engenharia da segurança viária para melhorar a segurança de motocicletas.
2. Assegurar a compreensão e aplicação dos princípios de segurança pelas pessoas que trabalham com a rede viária – projetistas, órgãos responsáveis pela manutenção das vias e engenheiros.
3. Contribuir para a Estratégia Nacional de Segurança Viária introduzindo um programa de sinalização para indicar os locais onde ocorre um grande número de incidentes com motocicletas.
4. Investigar maneiras de melhorar a resposta de emergência após a ocorrência de incidentes.

Planos de ação para os primeiros 3 anos
1. Investigar a notificação eficaz de incidentes no ambiente viário disponível para a comunidade de motociclistas.
2. Rever as especificações de engenharia do trânsito que aumentam a segurança de motociclistas, mantendo um equilíbrio com os requisitos impostos a outros usuários.
3. Educar os proprietários de recursos viários para que considerem a segurança dos motociclistas ao projetar, construir, manter e operar as vias.
4. Estabelecer oportunidades para que especialistas no desenho de vias, profissionais de engenharia e de manutenção compartilhem seus conhecimentos e experiências sobre a segurança dos motociclistas.
5. Continuar a pesquisa sobre barreiras de segurança e sua relação com as motocicletas.
6. Utilizar auditorias de segurança viária para rever e melhorar as rotas para motocicletas e suas características de segurança.
7. Documentar a política de “zona limpa” e continuar a comunicar as necessidades dos motociclistas em relação à beira da estrada a outros organismos, inclusive as empresas concessionárias de serviços públicos.
9. Explorar a detecção da localização de emergência para motociclistas.
10. Investigar a viabilidade de instalar telefones de segurança ao longo das rotas populares entre motociclistas.

As ações em cada componente incluem tanto iniciativas novas como modificações às ações e programas existentes.

Fonte: baseado em (4).
4.3 Elaboração de um plano de avaliação e monitoramento

O Módulo 2 apresentou a base de evidências sobre a segurança de PTWs e delineou quais intervenções e abordagens funcionam melhor, e por quê. Saber o que funciona na segurança dos PTWs é apenas parte da resposta. O monitoramento é necessário para obter medidas objetivas sobre o que funciona, vinculando as evidências à prática e às ações de segurança viária em um contexto específico. Uma avaliação bem conduzida contribui significativamente para ações baseadas em evidências, concentrando-se na medição dos resultados e, subsequentemente, promovendo a responsabilização baseada nos resultados. Os principais elementos do plano de monitoramento e avaliação, e o seu papel como parte fundamental da implementação do programa, são resumidos no Quadro 4.2.

QUADRO 4.2: Monitoramento e avaliação

O que é o monitoramento e por que fazê-lo?

O monitoramento é definido como o processo de supervisão de atividades em andamento para assegurar que estão no caminho certo para atingir os objetivos e metas de desempenho do programa.

Na segurança viária, as atividades de monitoramento ou vigilância abrangem a coleta regular de informações fundamentais de segurança viária sobre a saúde e outros indicadores do desempenho, bem como a análise de rotina das informações ao longo do tempo, dos lugares e dos grupos populacionais, com base em critérios pré- definidos (5). Para a vigilância ou monitoramento de saúde pública, também inclui a divulgação regular dos resultados para embasar a formulação de políticas (6).

O monitoramento é essencial para a identificação precoce de problemas de implementação, para resolver os gargalos ou lacunas no desempenho do programa e para captar adequadamente os fatores que contribuem para mudanças negativas e positivas no desempenho da segurança viária (7). Dependendo dos objetivos do programa e da sua complexidade, o monitoramento pode ser direcionado para medir os indicadores de impacto, produção e resultado.

O que é uma avaliação e por que fazê-la?

A avaliação é definida como o processo de determinar a direção de um programa (segundo o contexto em que ocorre a iniciativa), sua utilidade (o quão útil é alcançar um objetivo definido), eficácia (o desempenho de um programa em comparação com as evidências disponíveis) e pontos fortes (os aspectos do programa e as lições aprendidas que podem ser usados para melhorar a saúde pública) (5). A avaliação é uma função fundamental para a gestão de programas e é usada para garantir o bom planejamento, um orçamento adequado e a medição da eficácia e da eficiência.

Através da avaliação, os responsáveis pelo planejamento dos programas podem verificar se os componentes de um programa estão funcionando bem. A avaliação também fornece pistas sobre por que certos componentes funcionam ou não, facilita os processos de responsabilização e transparência e é fundamental para o planejamento estratégico de longo prazo (8).

Na segurança viária, os programas visam prevenir ou controlar as lesões, incapacidades e mortes. Como isto requer a consideração dos diferentes elementos do referencial Safe System e das diferentes necessidades dos grupos de interesse, os programas em si podem ser muito complexos. Além disso, como a maioria das intervenções eficazes envolve mudanças significativas e muitas vezes difíceis nas atitudes e comportamentos dos usuários, a complexidade do planejamento de um programa eficaz de segurança dos PTWs é ainda maior.

Fazer as perguntas certas sobre a eficácia é fundamental para qualquer avaliação. As perguntas sobre a eficácia de um programa exigem que os responsáveis pela implementação se dediquem a medir e documentar a aplicação do programa e o seu êxito em relação à concretização dos resultados pretendidos. O uso eficaz dessas informações os responsabiliza perante os principais grupos de interesse.
4.3.1 O que monitorar e avaliar

Uma vez que uma intervenção tenha sido identificada como prioritária e que tenha sido desenvolvida uma estratégia para a sua implementação, é preciso definir os indicadores para a implementação e monitorá-los regularmente. Os indicadores avaliam as entradas (recursos, mecanismos de coordenação, planos), saídas (progressos, tarefas concluídas, produtos atribuíveis à iniciativa) e resultados (mudanças desejadas em relação aos fatores de risco ou de proteção, como a redução dos riscos em estradas nas áreas com maior número de incidentes ou maiores taxas de uso de capacete, melhor infraestrutura, melhor desenho das vias e reduções no número de lesões e mortes). As áreas a serem monitoradas e avaliadas geralmente são apresentadas em um plano de monitoramento e avaliação (o Quadro 4.3 apresenta o exemplo de um componente de um plano de monitoramento e avaliação para a segurança de motocicletas).

<table>
<thead>
<tr>
<th>Entradas e processo</th>
<th>Saídas</th>
<th>Resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td>O que está sendo medido</td>
<td>O que foi conseguido</td>
<td>Metas alcançadas</td>
</tr>
<tr>
<td>Esforços multissetoriais</td>
<td>A implementação das atividades em relação a cada elemento do referencial Safe System: vias, veículos, velocidade, usuários, % do orçamento de segurança viária alocado</td>
<td>% de mudança nas lesões e mortes</td>
</tr>
<tr>
<td>Fundos alocados</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Que fatores demonstram o progresso</th>
<th>Planejamento inovador, baseado em evidências científicas</th>
<th>Todos os elementos do sistema se tornam cada vez mais seguros</th>
<th>Redução continuada dos incidentes e mortes</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Como é feita a medição</th>
<th>Implementação do plano de ação</th>
<th>Exemplo de fontes de dados: dados de inquéritos sobre velocidade</th>
<th>Dados sobre hospitalizações e mortalidade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Avaliação regular de iniciativas de segurança viária</td>
<td></td>
</tr>
</tbody>
</table>

Fonte: adaptado de (9).

4.3.2 Fontes de dados para monitoramento e avaliação

Os dados para o monitoramento e a avaliação da segurança de PTWs podem ter muitas formas diferentes e ser coletados de várias maneiras. As fontes podem incluir dados notificados rotineiramente em todos os locais ou em áreas sentinela, pesquisas de base populacional, dados de avaliação da infraestrutura (como listas de obras que abordam questões de segurança viária), dados de vigilância (como incidentes abordados pela polícia, internações hospitalares decorrentes de incidentes com PTWs), estudos observacionais sobre os usuários para medir as taxas de excesso de velocidade ou de uso de capacete e avaliações periódicas. A tabela 2.1, no Módulo 2, apresenta um resumo destas fontes, os tipos de dados que geram e observações sobre os pontos fortes e as limitações de cada tipo de fonte.
4.4 Desenvolvimento e execução de um plano de ação

As informações reunidas através da definição de resultados, da priorização de intervenções e da elaboração de um plano de monitoramento e avaliação devem ser resumidas em um plano de ação para consulta fácil por todos os grupos de interesse e responsáveis pela implementação de programas para a segurança dos PTWs. Embora as agências que lideram a segurança viária sejam responsáveis pela implementação de um plano de ação nacional, o apoio dos grupos de interesse e de defesa da causa também é essencial para garantir uma maior aceitação e sustentabilidade de intervenções eficazes e promissoras para PTWs.

4.4.1 Principais componentes de um plano de ação para a segurança dos PTWs

O processo de elaboração de um plano de ação para PTWs transforma as informações colhidas através da avaliação situacional em uma estratégia de implementação claramente definida.

Isto requer contribuições e apoio por parte de todos os grupos de interesse, que geralmente se reúnem num grupo de trabalho multissetorial facilitado por uma agência que lidera o processo (se houver uma agência disponível). Os planos de ação fortes têm vários componentes em comum (2):

- **Um problema bem-definido**: uma afirmação clara das necessidades, centrada nas questões mais importantes para PTWs.
- **Metas claras**: um conjunto de indicadores de desempenho que permitem alcançar um objetivo específico de segurança para PTWs (ver Seção 4.1 para o conjunto de princípios gerais a considerar na definição das metas).
- **Etapas de ação**: um esboço das intervenções planejadas e como serão realizadas. É importante documentar o que foi feito (aquilo que ocorreu conforme planejado ou não), pois a avaliação precisa concluir não apenas se a intervenção funcionou ou não, mas também o que funcionou. Parte da avaliação consiste em examinar o que foi efetivamente implementado em comparação com o plano.
- **Indicadores de desempenho**: uma forma de medir o progresso em direção a uma meta. Os indicadores de desempenho geram informações sobre as principais atividades e seus resultados com base no plano de ação. Cada indicador de desempenho deve ter metas específicas, que podem ser quantitativas ou qualitativas.
- **Um cronograma realista e metas realistas**: um cronograma de atividades que defina as datas de início e de término para a execução das diversas atividades incluídas no plano de ação. A definição dos principais marcos ao longo do tempo servirá como referência durante o processo de implementação. Os marcos podem ser usados para medir o progresso. A implementação efetiva requer flexibilidade para acomodar as modificações necessárias.
• **Identificar papéis e responsabilidades**: o plano de ação deve definir claramente que pessoas ou agências são responsáveis por cada ação ou etapa. Se isto não for identificado e definido desde o início, muitas vezes os participantes irão presumir que outras pessoas são responsáveis por certas tarefas.

• **Recursos adequados**: a disponibilidade de recursos financeiros e humanos é um componente fundamental para um plano de ação. A boa implementação do plano de ação depende da alocação adequada de recursos. Os recursos podem vir da redistribuição de fundos existentes ou da mobilização de novos fundos aos níveis local, nacional e/ou internacional.

• **Um sistema de monitoramento e avaliação**: um sistema que gera informações contínuas que podem ajudar a orientar a vigilância e a avaliação continuada do progresso, bem como a avaliação periódica das principais ações, metas e objetivos gerais ligados aos PTWs (como indicado no plano de ação). Os indicadores e metas de desempenho são definidos e indicados na seção de monitoramento e avaliação do plano de ação, e os resultados do monitoramento e da avaliação são usados para ajustar as atividades de segurança para PTWs.

Um exemplo de um plano de ação para a segurança dos PTWs é apresentado no Quadro 4.4.

4.4.2 Mobilizar e manter o apoio

Além da liderança assumida por uma agência principal, o envolvimento de pessoas, do setor privado (como fabricantes, seguradoras, varejistas) e agências com interesses diretos ou indiretos nos diferentes aspectos da segurança dos PTWs aumentará a probabilidade de obtenção de apoio contínuo e sustentado para o plano de ação e os programas a ele vinculados. Os grupos de defesa de causas são um dos grupos de interesse. Em alguns casos, o setor privado pode atuar como defensor da segurança, particularmente quando pode obter maiores lucros como resultado do programa. Por exemplo, a promoção do uso generalizado de capacetes irá beneficiar os fabricantes e revendedores e reduzir os custos para as seguradoras. Encontrar estratégias que permitam que todos saiam ganhando, tanto no setor público como privado, pode fazer do setor privado um parceiro e um grande defensor da iniciativa de segurança. Para sustentar o apoio dos grupos de interesse e agências, é importante que todos estejam cientes dos seguintes elementos:

• os objetivos do programa a curto e longo prazo;
• por que é necessária uma determinada intervenção ou um conjunto de intervenções;
• o seu papel dentro do programa;
• os indicadores da eficácia do programa;
• marcos fundamentais (com um prazo definido).
Implementação e avaliação de intervenções de segurança para PTWs

O Plano de Ação Estratégico do Texas para Motocicletas 2013-2018 foi desenvolvido ao longo de um período de 18 meses, durante o qual foi realizada uma avaliação situacional abrangente. Esta avaliação incluiu a análise de dados sobre acidentes e lesões com motocicletas, um inquérito estadual junto a motociclistas, uma revisão da literatura sobre medidas efetivas e uma revisão dos “sistemas de transporte inteligentes” e outras tecnologias para motocicletas e outros veículos. A análise dos dados identificou as características dos motociclistas e outros usuários envolvidos em acidentes com motocicletas, os principais fatores contribuintes e os locais e momentos de ocorrência de incidentes. Uma vez compreendido o tamanho e a natureza do problema, foram implementadas medidas eficazes e oportunidades tecnológicas e outras para a prevenção, sendo também realizada uma consulta com os principais grupos de interesse (incluindo especialistas, motociclistas e outros membros da comunidade) para desenvolver o Plano de Ação Estratégico para Motocicletas.

A implementação do plano foi supervisionada pela Texas Motorcycle Safety Coalition (TMSC), composta por representantes de grupos de motociclistas e outros usuários, engenheiros, agências de planejamento e fiscalização, responsáveis pela elaboração de políticas governamentais e os setores da educação e dos serviços de emergência, bem como pesquisadores.

Finalidade

A finalidade geral do plano foi reduzir a taxa de incidentes e lesões fatais e graves com motocicletas.

Metas*

As metas do Plano de Ação Estratégico para Motocicletas representaram as áreas prioritárias do programa, como:

- melhorar a conscientização entre os motociclistas da sua vulnerabilidade em incidentes e das maneiras de aumentar a sua visibilidade;
- aumentar a conscientização dos motoristas sobre a presença de motociclistas nas vias;
- assegurar a habilitação adequada de todos os motociclistas que utilizam as vias públicas no Texas;
- oferecer treinamento a todos os motociclistas que precisam ou procuram o treinamento;
- reduzir o número total de incidentes envolvendo motociclistas sob o efeito de álcool ou outras drogas;
- reduzir o número de incidentes com motocicletas relacionados com a velocidade e aumentar os conhecimentos dos motociclistas sobre os perigos do excesso de velocidade;
- aumentar o uso de todos os equipamentos de proteção por motociclistas e passageiros;
- considerar as necessidades de segurança dos motociclistas no desenho, construção e manutenção das vias;
- incentivar e apoiar iniciativas legislativas que promovam a segurança das motocicletas no desenho, construção e manutenção das vias;

Também foram incluídas muitas outras metas para assegurar que a legislação seja adequadamente aplicada, que as políticas e os programas recebam financiamento adequado e que a avaliação, a pesquisa e a coleta precisa de dados sejam realizadas para permitir a tomada de decisões bem fundamentadas.

Etapas de ação

Cada área prioritária identificada envolveu etapas de ação e prazos específicos para informar os grupos de interesse relevantes sobre as etapas a serem cumpridas na implementação do plano.

* O termo “metas” usado neste Plano de Ação Estratégico equivale a “objetivos”, conforme como identificado acima.

Fonte: baseado em (10).
Resumo

O conteúdo deste módulo pode ser resumido da seguinte forma:

- A implementação eficaz do programa requer uma abordagem estratégica, desde o planejamento até a execução, em que cada etapa seja baseada em evidências.
- O processo de implementação estratégica pode ser resumido em cinco etapas: definição dos resultados; priorização de intervenções; definição das capacidades de implementação; elaboração de um plano de monitoramento e avaliação; e sintetização de todas estas etapas em um plano de ação.
- A melhoria contínua da qualidade – usando indicadores de monitoramento e avaliação – deve ser incorporada no programa para PTWs e no seu plano de ação para assegurar a responsabilização baseada em resultados por todos os participantes.

Referências
