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A common error in the ecological regression 
of cancer incidence on the deprivation index

Gemma Renart,1 Marc Saez,1 Carme Saurina,1  
Rafael Marcos-Gragera,1 Ricardo Ocaña-Riola,2 Carmen Martos,3 
Maria A. Barceló,1 Federico Arribas, 4 and Tomás Alcalá4

In epidemiology, death or incidence 
ratios, standardized by factors known 
to confound the relationships of inter-
est, are used to compare incidence and 
mortality in different geographic areas. 

The indirect method of standardization 
compares cases observed in a particular 
area with those one would expect to 
find within a certain reference popula-
tion if the risks were the same for each 
age group. The standardizing factor 
is usually age distribution. The ratio 
of observed cases to expected cases, 
known as the standardized mortality 
ratio (SMR) or standard incidence ratio 
(SIR), is essentially a relative risk esti-
mator for the area (i.e., an estimator of 
the risk of illness in an area in relation 
to the reference population). However, 

it has been demonstrated that prob-
lems arise with the use of age-adjusted 
rates in ecological regression models 
(1). Rosenbaum and Rubin (2) confirm 
that using standardized rates as a re-
sponse variable in regression models 
leads to biased results because only the 
response values and not the predictor 
values are adjusted by the same con-
founding factor, usually distribution by 
age, resulting in what is known as the 
“mutual standardization problem.” An-
selin (3, 4) confirms that rates derived 
from both direct and indirect standard-
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ization are calculated assuming a homo-
geneous relationship between risk and 
distribution by age in space (and time). 
The use of a non-standardized predic-
tor variable implicitly assumes that the 
effect is constant across all strata of the 
confounding variable. Grisotto et al. (5), 
in line with Rosenbaum and Rubin (2), 
show that less biased estimators would 
be obtained by standardizing both the 
response and the predictor using the 
same variable, or by using the crude 
rates as response and including age in 
the regression models as one more ex-
planatory variable. 

The objective of this research was to 
show that introducing age as another 
explanatory variable in an ecological 
regression model relating crude rates of 
cancer incidence and a deprivation index 
provides better results than the usual 
practice of using the SIR as a response, 
introducing the non-standardized index, 
and not including age in the model. 

MATERIALS AND METHODS

The current study was undertaken 
within the framework of the MEDEA 
project.5 One of the project objectives 
was to estimate the relative risks associ-
ated with a deprivation index for some 
cancer locations in the Girona Health 
Region (GHR) in the province of Girona 
in northern Catalonia, an autonomous 
region in Spain, and to ascertain if the 
index could explain part of the spatial 
variability found in some of these loca-
tions (6, 7).

The analysis was performed on data 
provided by the Girona Cancer Registry 
(8, 9) for 1) incident cases of lung, tra-
cheal, and bronchial cancer (codes C33–
C34 in the International Classification of 
Diseases, 10th revision [ICD-10]); mela-
noma skin cancer (ICD-10 code C43); 
and non-Hodgkin’s lymphoma (ICD-
10 codes C82–C85 and C96) for men 
and women; 2) incident cases of larynx 
cancer (ICD-10 code C32) in men; and 
3) breast cancer (ICD-10 code C50) in 
women.

All residents of the GHR (670 096 peo-
ple, including 339 839 men and 330 257 
women, according to the 2006 municipal 
population register) were included in the 
study population. The study took place 

from the years 1993 to 2006 (both inclu-
sive), and the geographic area of analysis 
was the census tract.

The SIRs were calculated using the 
number of observed cases of the neopla-
sia of interest in the census tract i (with 
i = 1–500) during the period 1993–2006, 
and the number of expected cases of 
those diseases for the same tract. The 
reference population for the SIR was 
assumed to be the estimated population 
for each census tract in the GHR.

Although widely used, SIRs do have 
some limitations (7, 10, 11). These prob-
lems can be solved by smoothing. In this 
study, the Besag, York, and Mollié (BYM) 
model (12, 13) was used for Model 1, 
within a full Bayesian perspective. Two 
random effects were introduced into the 
model (spatial dependency and [nonspa-
tial] unstructured variability) to gather 
all unexplained variability, and the pa-
rameters were assigned a probability 
distribution (prior distribution).

The method used to estimate the model 
parameters is explained in Annex 1.

To test the properties of the estimators 
and the goodness of fit of the two mod-
els, two scenarios and two sub-scenarios 
were simulated (Annex 2).

Model 1

Stratifying by sex, the BYM model 
(Model 1) was specified as a general-
ized linear mixed model (GLMM) with a 
Poisson response variable
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where Oi is the number of cases observed 
in each census tract i; µi is the mean for 
the Poisson distribution (E(Oi)); Ei is the 
number of expected cases in each tract i; 
Si is the random effect that captures the 
spatial variability; and ui is the random 
effect that captured the unstructured 
variability.

A deprivation index was introduced 
into the model as an explanatory vari-
able to capture the specific socioeco-
nomic contextual effects of geographic 
location on health. The index was con-
structed in accordance with the protocol 
established for the MEDEA project (14). 
Indexji in Model 1 denotes dummy vari-
ables relative to the quintile j for each 
census tract i of the deprivation index, 

and bj is the associated parameter. The 
first quintile was used as the reference.

The random effects ui in Model 1 
were independent and normally dis-
tributed, with zero mean and constant 
variance. For the random effect that cap-
tures the spatial variability, a conditional 
autoregressive model (CAR) Si was used 
(15–17). The CAR model assumed de-
pendency existed between neighboring 
areas, with “neighboring” defined as 
“adjacent” (18).

Model 2

For Model 2, crude rates were used as 
the response variable, incorporating the 
age structure of the population as an ex-
planatory variable. The population was 
divided into five age groups (< 1 year, 
1–14 years, 15–44 years, 45–64 years, and 
65 years or more) corresponding to the 
five stages of health care (neonatal, child, 
young adult, adult, and old age). As can-
cer incidence is low for those under 14 
years old, the first three age groups were 
combined into one cohort, for a total of 
three age groups (≤ 44 years, 45–64 years, 
and 65 years or older). This resulted in 
alternative specifications for Model 2
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where Pobi denoted the population of 
census tract i, P4564i denotes the percent-
age of the population between ages 45 
and 64 years (both inclusive), and P65Mi 
denotes the population 65 years or older. 
The first age group (≤ 44 years) was not 
included in the model to avoid problems 
of colinearity with the two other age 
groups.

RESULTS

The results obtained from the model 
estimators are shown in Table 1. Model 1 
used the SIR as the response variable 
without standardizing the depriva-
tion index. Model 2 used crude can-
cer rates as the response variable, and 
a non- standardized deprivation index, 
but included the age structure of the 
population.

Model goodness of fit, measured us-
ing the deviance information criterion 
(DIC), was very similar or slightly better 

5  Study of socioeconomic and environmental in-
equalities in small areas of cities in Spain and 
other European countries (http://www.proyecto 
medea.org/eng/medea.html).
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TABLE 1. Results obtained from two ecological regression models relating crude rates of cancer incidence and a depri-
vation index, Girona Health Region, Catalonia, Spain, 1993–2006 

Variable Model 1a Model 2b

Lung, tracheal, and bronchial cancerc

Men
RRd

deprivation (95% CIe)
 Quintile 2
 Quintile 3
 Quintile 4
 Quintile 5
Age group (years)
 45–64
 ≥ 65

1.1633 (0.9468, 1.4304)
1.5304 (1.2444, 1.8860)
1.2678 (1.0380, 1.5499)
1.4287 (1.1664, 1.7514)

 —f

—

1.1140 (0.9097, 1.3652)
1.1063 (0.9003, 1.3610)
1.1783 (0.9629, 1.4442)
1.2081 (0.9721, 1.5057)

0.0468 (0.0065, 0.3384)
317.3329 (75.8287, 1326.0866)

Random effects (SDg)
 Spatial
 Unstructured

0.2033 (0.0539)
0.4449 (0.0299)

0.1658 (0.0564)
0.4313 (0.0286)

DICh 2508.3046 2487.6556
Zero values (%) 13.33

Women
RRdeprivation (95% CI)
 Quintile 2
 Quintile 3
 Quintile 4
 Quintile 5
Age group (years)
 45–64
 ≥ 65

1.3048 (0.7279, 2.4031)
0.9726 (0.5245, 1.8380)
1.1273 (0.6412, 2.0601)
1.3829 (0.7879, 2.5171)

—
—

1.1954 (0.6779, 2.1679)
0.7962 (0.4350, 1.4862)
0.8654 (0.4902, 1.5854)
1.0533 (0.6050, 1.9060)

0.0089 (0.0000, 1.8985)
20.6843 (1.6346, 257.6425)

Random effects (SD)
 Spatial
 Unstructured

0.2956 (0.1490)
0.3626 (0.3581)

0.1899 (0.1607)
0.4420 (0.3970)

DIC 1190.1819 1190.6651
Zero values (%) 60.0

Larynx canceri

 Men
 RRdeprivation (95% CI)
  Quintile 2
  Quintile 3
  Quintile 4
  Quintile 5
 Age group (years)
  45–64
  ≥ 65

1.2933 (0.9306, 1.8064)
1.3956 (1.0088, 1.9425)
1.4338 (1.0492, 1.9752)
1.7018 (1.2505, 2.3348)

—
—

1.2207 (0.8757, 1.7097)
1.1980 (0.8584, 1.6810)
1.3023 (0.9429, 1.8114)
1.3810 (0.9864, 1.9453)

0.0212 (0.0011, 0.3918)
537.7822 (65.3151, 4399.3923)

 Random effects (SD)
  Spatial
  Unstructured

0.1612 (0.0647)
0.2063 (0.0859)

0.1544 (0.0580)
0.1799 (0.0828)

 DIC 1321.5089 1319.5850
 Zero values (%) 50.48

Breast cancerj

Women
RRdeprivation (CI 95%)
 Quintile 2
 Quintile 3
 Quintile 4
 Quintile 5
Age group (years)
 45–64
 ≥ 65

0.9222 (0.7741, 1.0984)
1.1640 (0.9763, 1.3897)
0.8900 (0.7492, 1.0573)
0.8241 (0.6877, 0.9865)

—
—

0.9259 (0.7870, 1.0890)
0.8852 (0.7507, 1.0442)
0.8652 (0.7335, 1.0211)
0.8050 (0.6770, 0.9578)

1.3461 (0.2969, 6.1276)
51.7321 (23.0477, 116.3544)

Random effects (SD)
 Spatial 
 Unstructured

0.1262 (0.0400)
0.4385 (0.0256)

0.1202 (0.0390)
0.3847 (0.0240)

DIC 2604.262 2597.6874
Zero values (%) 10.00

Melanoma skin cancerk

Men
RRdeprivation (CI 95%)
 Quintile 2
 Quintile 3

0.9829 (0.6591, 1.4690)
0.8300 (0.5519, 1.2493)

0.9994 (0.6670, 1.5007)
0.8477 (0.5563, 1.2935)

(Continued)
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Variable Model 1a Model 2b

 Quintile 4
 Quintile 5

0.8108 (0.5428, 1.2134)
0.8011 (0.5343, 1.2034)

0.7946 (0.5250, 1.2066)
0.7308 (0.4673, 1.1490)

Age group (years)
 45–64
 ≥ 65

—
—

3.1204 (0.0586, 158.1628)
12.4271 (0.6514, 235.3040)

Random effects (SD)
 Spatial 
 Unstructured

0.2047 (0.0768)
0.1275 (0.0601)

0.1970 (0.0653)
0.1305 (0.0635)

DIC 900.5892 904.2285
Zero values (%) 66.19

Women
RRdeprivation (CI 95%)
 Quintile 2
 Quintile 3
 Quintile 4
 Quintile 5

0.8977 (0.5864, 1.3769)
1.1733 (0.7837, 1.7661)
0.9528 (0.6331, 1.4428)
0.8567 (0.5534, 1.3252)

0.9001 (0.5888, 1.3793)
1.1417 (0.7613, 1.7228)
0.9150 (0.6018, 1.4005)
0.8221 (0.5260, 1.2859)

Age group (years)
 45–64
 ≥ 65

—
—

1.2185 (0.0265, 55.1081)
20.5916 (2.6945, 154.6464)

Random effects (SD)
 Spatial 
 Unstructured

0.4290 (0.1401)
0.3807 (0.1108)

0.3583 (0.1261)
0.3860 (0.1107)

DIC 1021.8240 1017.9371
Zero values (%) 61.90

Non-Hodgkin’s lymphomal

Men
RRdeprivation (CI 95%)
 Quintile 2
 Quintile 3
 Quintile 4
 Quintile 5

1.0941 (0.8005, 1.4975)
1.3659 (1.0100, 1.8531)
1.4154 (1.0577, 1.9032)
1.0299 (0.7559, 1.4053)

1.0514 (0.7691, 1.4395)
1.1977 (0.8806, 1.6343)
1.3262 (0.9865, 1.7969)
0.8938 (0.6410, 1.2483)

Age group (years)
 45–64
 ≥ 65

—
—

0.0422 (0.0024, 0.7293)
819.3749 (101.6819, 6533.3545)

Random effects (SD)
 Spatial 
 Unstructured

0.1755 (0.0441)
0.3838 (0.0672)

0.1760 (0.0532)
0.3614 (0.0697)

DIC 1440.7600 1442.0572
Zero values (%) 42.38

Women
RRdeprivation (CI 95%)
 Quintile 2
 Quintile 3
 Quintile 4
 Quintile 5

1.0192 (0.7185, 1.4497)
1.1029 (0.7833, 1.5595)
1.2299 (0.8879, 1.7150)
1.0497 (0.7448, 1.4857)

0.9887 (0.6971, 1.4059)
0.9783 (0.6921, 1.3888)
1.0686 (0.7631, 1.5063)
0.8925 (0.6242, 1.2815)

Age group (years)
 45–64
 ≥ 65

—
—

0.0253 (0.0010, 0.6163)
158.6682 (30.3626, 838.8250)

Random effects (SD)
 Spatial 
 Unstructured

0.2091 (0.0776)
0.3585 (0.0835)

0.2091 (0.0752)
0.3468 (0.0868)

DIC 1275.0970 1283.1420
Zero values (%) 50.48

a Response variable: standardized incidence ratio (SIR); predictor: non-standardized deprivation index.
b Response variable: crude incidence rates; predictors: non-standardized deprivation index and age.
c International Classification of Diseases, 10th Revision [ICD-10] codes C33–C34.
d RR: relative risk.
e CI: Bayesian confidence interval.
f Not applicable.
g SD: standard deviation.
h DIC: deviance information criterion.
i ICD-10 code C32.
j ICD-10 code C50.
k ICD-10 code C43.
l ICD-10 codes C82–85 and C96.

TABLE 1. Continued
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in Model 2. However, the standard er-
rors of the random effect that captures 
the spatial variability and the standard 
deviations of the random effect that 
captures the nonstructured variability 
were lower when using Model 2 for 
all types of cancers except melanoma 
skin cancer in men and women, and 
tracheal, bronchial, and lung cancer in 
women (where they were higher), and 
non-Hodgkin’s lymphoma (where they 
were almost equal). 

The most significant differences were 
found in the statistical significance of the 
relative risk associated with the quintiles 
of the deprivation index. Thus, while the 
results of Model 1 indicate an association 
between the quintiles of the deprivation 
index and male cases of tracheal, bron-
chial, and lung cancer; larynx cancer; 
and non-Hodgkin’s lymphoma, the sta-
tistical significances disappeared com-
pletely when using Model 2. Moreover, 
the relative risks of Model 2 were much 
lower (albeit without statistical signifi-
cance) than those obtained in Model 1.

The only case where both methods of 
estimation provided a statistically signif-
icant association with the deprivation in-
dex (albeit only in the fifth quintile) was 
for incidence of breast cancer. However, 
the relative risk obtained in Model 2 was 
lower than that obtained in Model 1. 

In the above-mentioned three cases 
where Model 1 revealed a significant as-
sociation between the deprivation index 
and incidence of cancer (tracheal, bron-
chial, and lung; larynx; and non-Hodg-
kin’s lymphoma—all in men), being in 
either of the two age groups included 
in Model 2 (45–64 years, and 65 years 
or older) appeared to be a significant 
predictor. Statistical significance was the 
same in all three cases: negative for the 
group aged 45–64 years, and positive for 
the group aged 65 years or older.

Simulation

Even in the most favorable scenario 
(Scenario 1), the results for coverage 
(Table 2) and probability density for the 
parameter of interest (Figure 1) provide 
evidence that Model 1, which used the 
standard practice in ecological spatial 
regression (considering SIR as the re-
sponse variable and a non-standardized 
deprivation index as an explanatory 
variable), provided biased estimates.

In all scenarios, Model 2 had a bet-
ter fit than Model 1 in terms of lower 

DIC, effective number of parameters, 
and standard deviations of the random 
effects.

DISCUSSION

Technological progress and the avail-
ability of geographic information have 
allowed for the application of spatial 
epidemiology in the area of public health 
to identify areas with a higher risk of 
given health problems, using the SMR 
or the SIR, where incidence serves as 
an indicator for comparing risks in the 
different geographic areas studied. Vari-
ous indices have been introduced in the 
models to explain geographic variability 
(12, 13, 19).

The method of indirect standardiza-
tion of rates is frequently used to study 
the space–time distribution of incidence 
and mortality in small areas. However, 
various limitations exist that suggest this 
method should not be used in studies 
with geographic correlation, time series 
analysis of morbidity, or risk compari-
son between areas (20).

The SIR, like the SMR, is essentially 
a quotient of rates, adjusted using the 
direct method, where the numerator 

is the weighted mean for the specific 
study areas, or target population, and 
the denominator is the weighted mean 
for the rates specific to the external re-
gion, or non-target population. In this 
calculation, the standard or reference 
population corresponds to the area of 
study itself (the target population). The 
weighted values used to discern the 
weighted mean of specific rates derive 
from said population, so the reference 
population is never the external area 
or non-target population, as is often as-
serted in scientific publications. For this 
reason, SIRs for different geographic 
regions always have different reference 
populations, and the confusion bias re-
sulting from the different population 
pyramids is always present when com-
parisons are attempted. Therefore, it is 
incorrect to claim that geographic areas 
with elevated SIRs show a higher inci-
dence than areas with low SIRs. If the 
areas are not comparable, it is not pos-
sible to rank their values as synonyms of 
incidence frequency adjusted according 
to age and sex groupings. 

In addition, calculating the SIR would 
only make sense when the specific rates 
of the target and non-target areas are 

TABLE 2. Results of simulations testing the properties of the estimators and goodness of fit of 
two ecological regression models, Girona Health Region, Catalonia, Spain, 1993–2006

Scenario 1 Scenario 2

Sub-scenario A Sub-scenario B Sub-scenario A Sub-scenario B

Model 1
Log of RRIa

 Median 0.991 0.008 0.976 –0.009
 95% CIb 0.934, 1.049 –0.053, 0.069 0.928, 1.026 –0.065, 0.046
 Coverage rate (%)c 92 84 56 68
Random effects (SDd)
 Spatial 0.237 0.279 0.231 0.261
 Unstructured 0.254 0.293 0.243 0.271
DICe 2574.513 2570.395 2608.727 2606.805
nef

f 237.012 235.763 236.251 243.139

Model 2
Log RRI
 Median 1.001 –0.001 1.002 –0.001
 95% CI 0.959, 1.041 –0.049, 0.048 0.953, 1.051 –0.055, 0.054
 Coverage rate (%) 96 93 99 84
Random effects (SD)
 Spatial 0.196 0.214 0.208 0.236
 Unstructured 0.206 0.223 0.220 0.248
DIC 2501.478 2495.402 2517.502 2505.003
nef

f 188.836 189.473 197.276 194.670

a RRI: relative risk index.
b CI: Bayesian confidence interval.
c Percentage of times 95% CI contains the actual value of the parameter.
d SD: standard deviation.
e Deviance information criterion.
f Effective number of parameters.
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proportional. This condition is espe-
cially difficult to verify when the indirect 
method is applied, because the specific 
target area (20) rates are not used. For 
this reason, studying the geographic dis-
tribution of incidence using the SIR or 
SMR may dilute important aspects of 
each stratum of the population and re-
sult in biased results (21).

These questions about the use of SIRs 
also affect the analysis of ecological as-
sociations. The majority of epidemio-
logical studies model the logarithm of 
the mean number of cases observed 
according to the Napierian logarithm of 
the number of cases expected, which acts 
as an offset, plus a linear combination of 
explanatory variables. The parameters 
of the model are estimated through fre-
quentist or Bayesian methods, and the 
exponential value of the linear combina-
tion of explanatory variables is risk, or 
the adjusted SIR. However, because the 
order of these values lacks epidemiologi-
cal sense, it is inappropriate to equate a 

percentage increase or decrease in the 
SIR between two consecutive values of 
an explanatory variable to an increase or 
decrease in incidence adjusted by age or 
sex, because the compared areas have a 
different population pyramid (20).

Two scenarios with one sub-scenario 
each were simulated using two differ-
ent models. Model 1 reproduced the 
standard practice, with the SIR as a 
response variable and the non-standard-
ized deprivation index as an explana-
tory variable. In Model 2, crude rates 
were the response variable, and the non-
standardized deprivation index (the ex-
planatory variable) was adjusted by age. 

The results of the simulation provide 
evidence that, even supposing that the 
effect of the explanatory variable (the 
deprivation index, in this case) is con-
stant between strata of the confound-
ing variable (age, in this study), which 
would theoretically be the most favor-
able scenario for standard approxima-
tion, the estimators used in Model 1 

prove to be biased. In addition, good-
ness of fit, measured as both DIC and 
the size of the standard deviations of 
the random effects, proved to be much 
better in Model 2, as confirmed by 
the cancer incidence estimates from the 
various study sites.

Limitations

This study had some limitations. First, 
the duration of the study period was 14 
years, during which time changes may 
have occurred in the geographic distri-
bution of cancer incidence, the popula-
tion pyramid, and the indicators that 
constitute the deprivation index. This 
could have produced bias in the re-
sults, which were obtained using models 
that do not consider dynamic behaviors 
because annually updated sources of 
census information are not available. 
Second, the deprivation index may 
not truly measure deprivation among 
women. However, even if it does not, 

FIGURE 1. Simulations testing the properties of the estimators and goodness of fit of two ecological regression models (standard incidence ratio 
and crude cancer rates): probability density of the log of relative risk associated with the deprivation index, Girona Health Region, Catalonia, Spain, 
1993–2006
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the study results indicate that the vari-
ance in statistical significance across age 
groups and index quintiles seems to 
function differently among women ver-
sus men. Third, the fact that the statisti-
cal significance of the breast cancer index 
does not disappear may be explained by 
the age cutoff points (45 and 64 years 
respectively) for incidence of two types 
of breast cancer (onset before age 45–50 
and onset after age 45–50) and the fact 
that incidence among older age groups 
is better explained by the deprivation in-
dex. None of these limitations are likely 
to have rendered the main results of 
this work invalid, however, because the 
evidence suggests that both geographic 
variability of incidence and the depriva-
tion index depend on age. 

Conclusion

This study found that when attempting 
to explain the relative risk of incidence 
of cancer using ecological models that 
control geographic variability (meaning 
both spatial and nonstructural extra vari-
ability), crude rates should be used as a 
response variable and age included as 
another explanatory variable. The ad-

justments obtained would appear to be 
in line with Rosenbaum and Rubin (2), 
Anselin (3, 4), and Grisotto et al. (5), 
suggesting that the parameter estima-
tors using SIRs as a response variable 
without standardizing the deprivation 
index (the standard focus) are biased 
and thus providing more evidence of 
the “mutual standardization problem” 
(biased results stemming from the use of 
standardized rates as a response variable 
in regression models). Introducing age as 
another explanatory variable in an eco-
logical regression model relating crude 
rates of cancer incidence and the depriva-
tion index provides better results because 
there is no reason to assume that the ef-
fect of each deprivation index quintile is 
constant across the different strata of the 
age variable (5). The current study results 
also suggest that geographic variability 
of incidence and the deprivation index 
depend on age. Therefore, the standard 
(SIR) focus should probably not be used, 
as its effect would not be independent of 
the variable associated with risk.
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ANNEX 1. Method used to estimate parameters for ecological regression models relating crude rates of 
cancer incidence and a deprivation index, Girona Health Region, Catalonia, Spain, 1993–2006 

Spatial models were built as Bayesian hierarchical models with two stages (1). The first stage was 
the observational model p(y|x), where y denotes the vector of observations and x denotes the un-
known parameters following a Gaussian Markov random field (GMRF) denoted as p(x|θ). The 
second stage was given by the hyperparameters θ and their respective prior distribution p(θ). The 
desired posterior marginals 

p x y p x y p y di i( ) ( , ) ( )= ∫ θ θ θ
θ

of the GMRF were approximated using the finite sum

 
p x y p x y p yi

k
ki k k

� � �( ) ( , ) ( )= ∑ θ θ ∆
 

(A1)

where p̃(xi|θ,y) and p̃(θ|y) denote approximations of p(xi|θ,y) and p(θ|y), respectively. The finite 
sum was evaluated at support points θk using appropriate weights Dk.

The posterior marginal p(θ|y) of the hyperparameters is approximated using a Laplace 
 approximation (2)
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x x

G
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( , , )

( , )
( )θ θ
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where the denominator p̃G(xi|θ,y) denotes the Gaussian approximation of p(x|θ,y) and x × (θ) is the 
mode of the full conditional p(x|θ,y) (3).

According to Rue et al. (4), it is sufficient to “numerically explore” this approximate posterior 
density using suitable support points θk in the finite sum (A1). In this report, these points were 
defined in the H-dimensional space, using the central composite design (CCD) strategy. Here, 
center points were augmented with a group of star points, which allowed for estimating the 
curvature of p̃(θ|y) (4).

Here, to approximate the first component of the finite sum (A1 ), a simplified Laplace approxima-
tion (less expensive from a computational point of view, with only a slight loss of accuracy) was 
used (1, 4, 5). 

The models were compared using the DIC (6)

DIC = goodness of fit + complexity = D(–θ) + 2pD

where D(–θ) denotes the deviance evaluated at the posterior mean of the parameters and pD denotes 
the “effective number of parameters,” which measures the complexity of the model (6). The lower 
the DIC, the better the model.

The standard deviations of the spatial and the unstructured random effects, which reflect the 
extra variability captured by the model, were also observed.
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ANNEX 2. Simulation testing properties of estimators and goodness of fit for ecological regression 
models relating crude rates of cancer incidence and a deprivation index, Girona Health Region, Cata-
lonia, Spain, 1993–2006

To test the properties of the estimators and goodness of fit, two scenarios and two sub-scenarios 
were simulated for each of the models. In Scenario 1 it was assumed that the effect of the index 
was constant across age levels, whereas in Scenario 2 it was assumed that the effect of the index 
varied across age levels. For both scenarios, two sub-scenarios were simulated—one with the rela-
tive risk associated with the index as statistically significant (Sub-scenario A) and one in which it 
was not (Sub-scenario B). The GHR was used as the study area, with the same age and sex structure 
described above, and the previously constructed deprivation index was used as an explanatory 
variable, although in this case it was a continuous variable:

Scenario 1
Sub-scenario A

log(mi) = –5.25 + Index + log(Ei) + Si + ui

Sub-scenario B
log(mi) = –5.25 + log(Ei) + Si + ui

Scenario 2
Sub-scenario A

log(mi) = –5.25 + Index + log(Pobi) – 
1.40P4565i + 7.30P65Mi + Si + ui

Sub-scenario B
log(mi) = –5.25 + log(Pobi) – 1.40P4565i + 
7.30P65Mi + Si + ui

Index, Pob, P4565, P65M, E, S, and u are defined above; the variable σs = 0.20 and the variable σu = 
0.25 (i.e., they are chosen values, like those of the parameters, with the exception of the one associ-
ated with the deprivation index, based on estimates from a preliminary model).

A total of 100 Poisson variables were simulated, corresponding to Oi ~ Poisson (mi), for each of the 
four cases (two scenarios and two sub-scenarios).

Objetivo. Determinar si la introducción de la edad como otra variable indepen-
diente en un modelo de regresión ecológica que relaciona las tasas brutas de inci-
dencia de cáncer con un índice de carencia, ofrece mejores resultados que la práctica 
corriente del uso de la razón de incidencia normalizada como criterio de valoración, 
con introducción del índice sin normalización y sin incluir la edad en el modelo. 
Métodos. Se calcularon los riesgos relativos asociados con el índice de carencia de 
algunos tipos de cáncer en la Región Sanitaria de Girona en España, mediante dos 
modelos diferentes. En el modelo 1 se calcularon los riesgos relativos con el método 
indirecto, usando la razón de incidencia normalizada como criterio de valoración. 
En el modelo 2 se calcularon los riesgos relativos introduciendo la edad como una 
variable independiente y las tasas brutas de cáncer como criterio de valoración. Se 
simularon dos hipótesis y dos subhipótesis con el fin de verificar las propiedades de 
los estimadores y la bondad del ajuste de ambos modelos. 
Resultados. Los resultados obtenidos a partir de las estimaciones con el modelo 2 
fueron un poco mejores (menos sesgados) que los resultados obtenidos con el modelo 1.  
Los resultados de la simulación indicaron que en todos los casos (las dos hipótesis y 
las dos subhipótesis) el modelo 2 exhibió un mejor ajuste que el modelo 1. La función 
de densidad del parámetro de interés puso en evidencia que el modelo 1 da lugar a 
estimaciones sesgadas. 
Conclusiones. Cuando se intenta explicar el riesgo relativo de incidencia de cáncer 
mediante modelos de regresión ecológica que tienen en cuenta la variabilidad geo-
gráfica, se obtienen resultados menos sesgados cuando se introduce la edad como 
una de las variables independientes y se utilizan las tasas brutas de incidencia como 
criterio de valoración. 

Incidencia; análisis espacial; riesgo; España.
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